
Agility and Architecture: Why and
How They can Coexist?

M. Ali Babar

IT University of Copenhagen, Denmark

Keynote, Third Turkish Software Architecture Conference

Ankara, Turkey, November 4, 2010

Background Brief
M. Ali Babar
Associate Professor @ ITU
PhD in CSE, University of New South Wales
Work History:
 ITU, CPH: 2009 …
 Lero, Ireland: 2007 – 2009
 NICTA, Australia: 2003 - 2007
 JRCASE, Macquarie University: 2001 – 2003
 Various industrial roles in IT: Prior to 2001
Research in software architecture,
Service Orientation, Cloud Computing, and
Software Development Paradigm
http://malibabar.wordpress.com

ITU, CPH

Today’s Talk

•  What is Agility?
•  Perceptions about architecture
•  What is architecture?
•  Why do we combine agile and architecture?
•  Lessons from two case studies
•  Some practical points on integration
•  Take-Away – one thought

– Agility and architecture:
 A match made in Heaven…broken on Earth?

Agility

•  Agility is the ability to both create and
respond to change in order to profit in
a turbulent business environment.

•  Characteristics of Agile development
–  Iterative and incremental
– Small releases
– Release plan/feature backlog
–  Iteration plan/task backlog
– Collocation

!"#$%"&'(#")'$*+,,+-$

./01"2$34&4()"05$*+,,6-$

Agile Manifesto

We are uncovering better ways of developing software
by doing it and helping others do it. Through this work
we have come to value:

•  Individuals and interactions over process and tools,
•  Working software over comprehensive documents,
•  Customer collaboration over contract negotiation,
•  Responding to change over following a plan.
That is, while there is value in the items on the right, we

value the items on the left more

.74895:$'));:<<===>/&"?5#/0"@5()7>78&<$

Perceptions about Architecture

•  Architecture is Big Up Front Design (BUFD)

•  Architecture means massive documentations

•  Architecture doesn’t add value to customers
–  You Ain't Gonna Need It (YANGI)

•  Architect – Prescriptive guy

Architecture Agility

What is Software Architecture?

•  Architecture is the fundamental organization of a
system embodied in its components, their
relationships to each other and to the environment
and the principles guiding its design and evolution.
(IEEE1471 – 2000).

•  A software system’s architecture is the set of principal
design decision made about the system (Taylor, R., et
al., 2010).

•  Its all about design DECISIONS – bad, good and
better ones

•  Context – good decisions may become the bad ones

Software architecture should
provide intellectual control

and specifications for
meaningful reasoning by

stakeholders !

Architecture: Key Design Decisions

Source: Cooney et al., 2007!

Quotes from Agile Practitioners!!!
•  “It seems that many agile method users misunderstand what

agile methods are, just ignore architecture, and jump onto
refactorying.” Satoshi Basaki

•  “The YAGNI belief has led many agile team ultimately to a
point of failure by ignoring the architecture’s essential
elements.” Blair, Watt, Cull.

•  “Architecture is just as IMPORTANT in XP projects as it is in
any software project. Part of the architecture is captured by
the system metaphore.” Kent Beck

•  “Tension between agility and architecture might be FALSE
dichotomy.” Craig Larman

Augmenting XP: Why and How?

•  Quality requirements
“A system isn’t certifiably secure unless it has been built with

a set of security principles in mind and has been audited by
a security expert. While compatible with XP these practices
have to be incorporated into the team’s daily work.” (Kent
Beck, 2004)

•  Scaling XP
“With awareness and appropriate adaptations, XP does scale.

Some problems can be simplified to be easily handled by a
small XP team. For others, XP must be augmented. The
basic value and principles apply at all scales. The practices
can be modified to suit your situation.”

•  Context based adaptation is INEVITABLE

How to combine Agility &
Architecture?

A Story….

•  A market leader in financial products
& services

•  Multiple development sites with
various development paradigms

•  Agile adoption started in 2005
•  Needed to combining plan driven and

agile in distributed arrangements
•  Main motivation was increased

competition from other sites for
internal offshoring

Architecture Design

•  Agile project apply two stages of design solutions:
–  Draw HIGH LEVEL roadmap called Software Architecture

Overall Plan (SAOP)
– Developers look for flaws – design validation

•  NO attention to quality attributes – rather use
–  Re-factoring – for example improving performance
–  Maintenance projects – can be up to 2 years!!!

•  Upfront design – Something that would change later

•  Main drivers - functionality, delivery time, budget

Architecture Documentation

•  Before Agile
–  Comprehensive documentation of architecture and design
–  Minimum four weeks on specifications for a medium size project

•  After Agile
–  Drastic reduction in architectural documentation – ONLY SAOP

•  Argument against documentation - Formal
documentation did not add much value to customers

•  30% - 40% reduction in documentation resources

•  NO argumentation around and documentation of design
that may NOT be implemented later on

Sharing Design Decisions

•  Before Agile
–  Detailed architectural documentations and ARB meetings

•  After Agile
–  Wiki and design meetings for sharing design decisions

•  Design decisions on Whiteboards until implemented

•  Wiki is delivered with software release

•  Wiki based sharing of design initially works but then
searching design decisions becomes cumbersome

•  Tracking architectural decisions becomes hard

Agile Approaches – Positives

•  Bringing developers EARLY in the design decisions

•  Don’t spend HUGE AMOUNT of time discussing and
documenting solutions that may not be implemented

•  Clear and agreed upon deliverables for KNOWN
delivery date and budget - small iterations

•  Saving up to 30-40% resources on design documents

•  EASILY and QUICKLY sharing design decisions and
knowledge through Wikis and design meetings

Agile Approaches – Negatives

•  Implementing User Stories WITHOUT a good
knowledge of subsequent inter-dependencies

•  Architecturally very RISKY for new projects when
potential solutions are NOT very well understood

•  NO time for careful design or considering alternatives

•  NO encouragement to focus on quality attributes

•  Design knowledge remains with INDIVIDUALS

•  Searching design decisions on Wiki can be
DIFFICULT

Challenges & Strategies!!!

Challenges and Strategies 1/2

•  Incorrect prioritization of user stories (C)

•  Involve architects and developers in feature analysis
workshop (S)

•  Lack of time and motivation for considering design
choices (C)

•  Combine zero feature release with Feature Analysis
Workshop (S)
–  Zero feature release - Do architecturally focused work

without delivering any user-visible features

Challenges and Strategies 2/2

•  Unknown domain and untried solutions (C)

•  Apply hybrid approach (S)

•  Pilot project for sorting out backlogs (S)

•  Lack of focus on quality attributes (C)

•  Make quality attributes a success factor (S)

•  Link development and maintenance budgets (S)

•  Lack of Skilled people (C)

Another Story….

•  Security software leader
•  Market of 90+ countries
•  Agile transformation begin

in 2005
•  Commonly held agile

beliefs couldn’t work!!!
•  Introduced platform based

development for SPEED
•  Agile & Product lines

Features &
resources

Agile Approaches in Product Lines

Key Practices 1/2

•  Implementing features without up-front design
exploration Doesn’t work

•  Research projects can discover potential problems

•  Rotate staff between research and product projects

•  Research projects are carried out using Agile
practices BUT no delivered functionality

–  Shorter lengths of Sprints – 2 weeks

•  Organize teams based on the use of platforms

Key Practices 2/2

•  Establishing mutual trust between the lead architect
and a project architect is essential

•  Use of “Daily Meetings” for architectural discussions

•  Use high level architectural description for
subcontractors, new team members, big architectural
modifications, and developing new products

•  Each of the platforms has its own confluence to share
architectural documents and knowledge

Communicating Architecture

•  Communicating architectural knowledge is an integral
part of integrating product line and Agile practices

•  All designers regularly read the overall architecture
and comments on debatable issues

•  Every new designer is expected to read the whole lot
from the beginning to the end and all updates

•  Sharing architectural knowledge by locating all
platforms’ teams very close to each other

A few more practical points

Architect: Role & Responsibilities

Institutionalized the
role of architect with

more focus on
facilitation & serving !

An architect should know
how to sell a key design

decision to product
owners in conflicting

situations!

An architect needs to
have good

understanding of
Agile approaches!

Project architect should
know the overall

architecture, required
features, and

implementation status!

Have multiple architects –
solution architect, software

architect and implementation
architect for certain kinds of

projects!

Architect should
document/update and

communicate the
architecture!

Users Stories….

User Stories + Quality Scenarios
M1 (H, H): Add the ability to interact with a new
University record system to validate the
authenticity of a degree within 2-person day.!

Exploit Scenarios & Patterns

•  Scenarios are useful for evaluating multiple
quality attributes of software architecture

•  Key scenarios can drive the evaluation
–  describe the behavior of architecture
–  set the context for particular quality attributes

•  Knowledge of patterns is always handy for
quickly evaluating design alternatives

•  lightweight and agile process
–  Only two roles involved
–  Repository of architectural knowledge

1 1
Proxy

service

Service

service

AbstractService

service

Client

Agile Evaluation of Architecture

Architect
Developer

Stakeholders

Step 4. Prototype
Step 5. Evaluate
quality attributes

Development Architecting

Business goals

Step 1. Determine quality
attributes
Step 2. Generate key scenarios
Step 3. Determine architecture
Alternatives – patterns and tactics
Step 6. Discuss evaluation results

Get Stakeholders on Board Early

Design and Use Simple Templates

Agile Values and Architecture

XP values Architectural Approaches
Communication Facilitate stakeholders’ involvement at all

stages of development
Simplicity Coarse-grained design with only enough

architecting to ensure quality attributes
Feedback Architectural evaluation provides early

feedback on risky and non-risky decisions
Courage Foreseen changes can be planned and

incorporated in the design, risk avoidance

A Few Take-Aways!!!

•  Understand the Context

•  Clearly and precisely define architecture

•  Show architecture’s business value to product owner

•  Communicate and coordinate through architecture

•  Use critical functionality to assess architecture

•  Understand when to freeze the architecture

•  Track unresolved architecture issue (backlog)

Acknowledgements

•  Discussions with Philippe Kruchten and his writings and ideas
shared by Pekka Abrahamsson

•  Collaboration with Minna Pikkarainen and Toumas Ihme of
VTT, Finland was the main sources of case studies

•  Some ideas have been based on the articles submitted to our
call to a special issue of IEEE Software and included in its final
publication in March/April, 2010.

References
•  Abrahamsson, P., Ali Babar, M., Kruchten, P., Agility and Architecture: Can They Coexist?. IEEE

Software 27(2): 16-22 (2010).
•  Faber, R., Architects as Service Providers. IEEE Software 27(2): 33-40, (2010).
•  Madison, J., Agile Architecture Interactions. IEEE Software 27(2): 41-48, (2010).
•  Blair, S., Watt, R., Cull, T., Responsibility-Driven Architecture. IEEE Software 27(2): 26-32, (2010).
•  Ali Babar, M., An exploratory study of architectural practices and challenges in using agile software

development approaches. WICSA/ECSA 2009: 81-90.
•  Ali Babar, M., Ihme, T., Pikkarainen, M., An industrial case of exploiting product line architectures in agile

software development. SPLC 2009: 171-179.
•  Nord, R., Tomayko, J., Software Architecture-Centric Methods and Agile Development. IEEE Software 23

(2): 47-53 (2006).
•  Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A., America, P., A general model of software

architecture design derived from five industrial approaches. Journal of Systems and Software 80(1):
106-126 (2007).

Thank You

M. Ali Babar

alibabar.m@gmail.com
malibabar.wordpress.com

