An Empirical Evaluation of an Activity-Based

Computing Middleware Infrastructure to Support
Global Software Development (ABC4GSD)

Paolo Tell
Software System Section
IT University of Copenhagen, Denmark
pate@itu.dk

Abstract—Global Software Engineering (GSE) teams face
challenges due to the need to replace traditional physical presence
interactions and co-ordination with computer-mediated means.
A vast majority of the available tool support for distributed
collaboration is deep-seated in a desktop metaphor introduced
in the ‘70s, and huge efforts are being devoted to overcome
its known limitations. Over the last few years we have looked
into the feasibility of providing an approach based on Activity-
Based Computing (ABC) to address these issues in a novel way.
We have developed a middleware and support tool, ABC4GSD,
to enable collaborative distributed features in an application,
while maintaining common interactions with the workstation that
users are accustomed to. In this paper we present the results
of a pilot expert evaluation we conducted on ABC4GSD using
exemplar GSE scenarios. Participants’ responses show positive
and encouraging reception of the activity-based approach to
supporting GSE.

I. INTRODUCTION

The geographical distribution of software development
teams across multiple sites has become a widely accepted
software development paradigm, usually known as Global
Software Engineering (GSE) [12]. As a result of the increasing
popularity of GSE, more and more software development
projects are being undertaken by following some kind of
GSE paradigm. This promises several different benefits, such
as availability of large pool of skilled developers, relatively
low cost of development, and shorten time-to-market [8].
However, it also entails many unique challenges defined
by geographical, cultural, linguistic, and temporal distances
[22][8]. For example, an intensified degree of communication,
coordination, and collaboration among team members is re-
quired and the provision of suitable tool support is essential.
Communication, coordination, and collaboration—also called
3Cs—were initially identified for groupware technologies [11],
and afterwards have been widely accepted as key features for
many tools in Software Engineering (SE) [29].

Given the critical role and importance of appropriate and
adequate tool support for GSE teams, many different solu-
tions have been proposed by both academia and industry
[17]1[37][29]. However, there are still research challenges re-
lated to bridging the gap between co-located and distributed
environments. Previous research has focused on either enhanc-
ing particular development processes, e.g., inspection meetings
[18] and requirements management [16], or incorporating in-

Muhammad Ali Babar
Software System Section
IT University of Copenhagen, Denmark
maba@itu.dk

John Grundy
Centre for Computing and
Engineering Software Systems
Swinburne University of Technology
jerundy @swin.edu.au

formation from different sources into monitoring applications,
e.g., T3 [35] and FastDash [3]. We argue that to support
GSE teams more comprehensively, these challenges need to
be faced from a wider perspective, thus by providing “[...] a
virtual space wherein all the stakeholders of a project—even
if distributed by time or distance[, culture or language,]—may
negotiate, brainstorm, discuss, share knowledge, and generally
labor together to carry out some task, most often to create
an executable deliverable and its supporting artifacts” [5].
Even if Booch and Brown [5] explicitly suggest that the
web platform appears to be the most suitable environment for
hosting Collaborative Desktop Environments (CDEs), different
approaches are being trialled. Recently, Tamburry et al. [31]
have also confirmed the importance of explicitly supporting
social communities, and social structures. Awareness of the
teams, of the tasks, and of the available skills are identified as
critical in the context of GSE. In their study, they show a major
need for task and artifact co-ordination in GSE, argument
which we tackled in [34] by showing how artifact-oriented
approached can be supported by our application of the Activity
Theory (AT) [19].

Encouraged by its application in different domains, we
are leveraging the Activity-Based Computing (ABC) [23]
paradigm—grounded in AT—for providing a flexible and eas-
ily adaptable infrastructure for building and using activity-
aware tools for GSE teams. This use of the ABC paradigm in
the context of GSE has also been motivated by the successful
use of Activity-Centric Computing (ACC) [38] and ABC [2]
in different disciplines, such as the use of ABC for supporting
mobile and distributed users in handling concurrent activities
for intense collaboration in hospitals [2]. An ABC enabled
system can:

e provide a unified abstraction mechanism able to aggregate
the different digital and human resources required for a
particular software development activity in a personalized
manner;

e support multi-tasking among different activities, lessening
metal overhead and reducing the burden of constantly
dealing with work fragmentation;

e support collaboration, coordination, and the creation and
preservation of awareness; and,

e facilitate, to a certain extent, application interoperability.

We have developed a prototype implementation of an ABC
system for GSE, called ABC4GSD, which core features will

be briefly described. We have carried out an evaluation of
our ABC4GSD platform for some exemplar GSE activities.
We present the results of a pilot expert evaluation that we
have conducted to assess its perceived usefulness, ease of use,
and self-predicted future use, using an adapted version of the
Technology Acceptance Model (TAM) proposed in [15]. We
enriched the questionnaires used in our study to focus also
on two critical aspects of GSE working environments, i.e., the
aggregating capabilities of the system and its ability to support
work fragmentation.

In the remainder of this paper, we will briefly describe
in Section III the high-level client-server architecture that has
been designed to support the introduction of ABC in GSE
and the current user interface. Further, Section IV will list the
research objectives of this paper, and Section V will introduce
the pilot expert evaluation, which results are discussed in
Section VI. Threats to the validity of the experiment are
the topic of Section VII; and results are further discussed in
Section VIIIL.

II. BACKGROUND AND MOTIVATION
A. Tools for GSE

Diverse approaches have been used to provide tool support
for GSE teams. However, a majority of them remain bound
to a desktop-based single user paradigm, whose heritage can
be traced to the ‘70s [27]. A huge effort has to be devoted
to overcome the well known limitations of the currently
used desktop metaphor, which was designed to support tasks
performed by a single user. As such, some tool support for
GSE has been developed in the form of plug-ins providing ad-
ditional multi-person functionalities to improve existing single-
user applications. There is an increasing focus on enhancing
Integrated Development Environments (IDEs), such as Eclipse
(e.g., IBM Jazz [13]) or Visual Studio (e.g., FASTDash [3]),
to provide this kind of extension. One of the most successful
examples of such tools in the context of distributed software
engineering is Jazz [13], consisting of a set of plug-ins for
Eclipse designed to provide status- and task- related awareness
about team members. The most notable visual element is
the Jazz band: a plug-in that enhances Eclipse by providing
the list of people participating to the project inside the IDE.
The whole system is supported by IBM Rational Jazz, which
is a platform providing a binding service layer that allows
information sharing throughout the linked components. Whilst,
there have been several successful reports of integrating and
using different GSE tools developed as plug-in, most of them
have been designed to address one particular challenge being
faced by GSE teams and are hardly customizable. Furthermore,
even if these plug-in based tools may potentially be very
effective, they are designed for specific software technologies
and do not interoperate with other system.

Hundreds of tools have been developed to support GSE
teams [24][33]. However, it can be argued that there has been
relatively little attention paid to tackle the problem with a
wider perspective by enhancing coordination, collaboration,
and communication within practitioners’ teams. The majority
of available tools focus on mitigating a specific issue by
enhancing a particular software process (e.g., [7]), denying
the benefits that could be gained by approaching GSE issues

as an integrated system to support. Following this direction,
researchers have looked into the feasibility of providing a
better integration among the numerous tools utilized by GSE
teams [14]. To tackle this objective, two different approaches
have been followed: one operating at the model level, the
other at the application level. The idea behind the former is to
provide a common abstraction layer with which applications
can interoperate by having a common understanding about the
information handled. Examples of such approach include Soft-
Dock [30], which allows developers to collaboratively model
software components in UML by using UML eXchange For-
mat (UXF) to exchange data between the clients in a CORBA
architecture; and ADAMS [10], a system that improves project
and artifact management by providing a fine-grained version-
ing system able to drastically enhance traceability. However,
similarly to plug-in tools, these solutions provide support only
to one particular aspect of the software ecosystem used in
a GSE work environment and are not suitable for enhancing
crucial characteristics of computer-mediated teamwork as a
whole problem. In the case of application level integration,
approaches try to support tools by providing a common way
of interacting via an infrastructure or middleware. Through
this method, the work environment can be enhanced as a
whole providing an interaction mechanism to support different
kind of enhancements. An approach, this, followed also by
the solutions proposed by commercial vendors like IBM (i.e.,
Rational Suite), which are pushing towards comprehensive
approaches ensnaring users in their platform packages. Two
main architectural styles are used in these systems: peer-to-
peer (P2P), often leveraging agent systems, and client-server.
Examples of the P2P group can be found in [25] where an
architecture is used to enhance collaboration in a distributed
environment or in [21] where an environment able to provide
applications integration is described. However, to justify the
use of a P2P architecture, it is claimed that coping with
GSE environments entails the presence of a large number of
users, thus, a dense interaction that may find a bottleneck
in a client-server design. Our belief is that this is rarely
the case. In fact, one of the reasons behind the decision of
starting a global or distributed collaboration is the need for
more readily available skills [28], often because the initiator
of the collaboration is a small- or medium- size organization.
Moreover, the performances of the network infrastructures are
constantly increasing and solutions deployed on cloud based
infrastructures are able to minimize the issue presented as
the main argument for choosing a P2P architectural style.
Therefore, the tradeoff between risking bottlenecks with a
client-server solution and loosing all the benefits of having
a centralized control over the communication by adopting a
P2P approach, is resolved in our design in favor of the client-
server architectural style. An interesting example based on this
approach is the middleware designed to enhance CASE tools
providing awareness information presented in [20].

We assert that, from our experience [32][34], rather than
enhancing a single application or process, there is a key need
of an approach and infrastructure that can enable tools to adapt
to the activities to be performed by GSE team members. By
allowing existing and new tools to be activity-centric, such
an infrastructure could help GSE practitioners to aggregate
all the required human and digital resources for a particular
software engineering activity such as designing a software in

a collaborative arrangement; allow them to switch between
activities and hand-over activities to other team members
geographically distant; allocate and reallocate resources for
different activities; and be aware of other members’ working
status.

B. Approaches Based on Activity Theory

In activity-based approaches to work co-ordination, the
fundamental metaphor provided to organize work is focused
on the concept of the activity, rather than being strongly tied
to the ones of file/document or application. Examples include
the Gnome project, called Gnome Shell', where the concept of
workspace is replaced by the one of activity bundling up digital
artifacts and applications connected to them. Applying the con-
structs provided by Activity Theory, Yarosh et al. from IBM
[38] have defined their work as Activity-Centric Computing
(ACC): an activity theory loosely inspired approach designed
to “[...] address work fragmentation by allowing users to
structure their work around the computational construct of an
Activity.” Other notable contributions for tool support based on
the activity theory include the desktop manager called Giornata
[36], and the Context-Aware Activity Display (CAAD) [26].
In these examples, the approach followed is the one initially
introduced by Norman in the "90s called Activity-Based Com-
puting (ABC). In his book [23], he states that “[...] the basic
idea is simple; make it possible to have all the material needed
for an activity ready at hand, available with little or no mental
overhead.”. Thus, the core concept of ABC is to provide an
automatic, seamless, and non-intrusive support for activities.
Bardram has successfully demonstrated the applicability of the
ABC paradigm for supporting different collaborative activities
in hospitals [2]. He developed a framework that provides
a robust replacement for the application-oriented computing
paradigm by focusing more on the principles of roaming,
sharing, and awareness. However, as we have shown in [34],
the application of activity theory in software engineering differ
from the one applied in hospitals; and, the core principles
of the ABC paradigm [2] can provide a solid foundation for
building an infrastructure that can help address many of the
existing GSE related challenges.

III. ABC4GSD

Our ABC4GSD system is a middleware incorporating ABC
concepts and is based on the client-server architectural style
that supports event based co-ordination and communication.
The main high-level components of its infrastructure are de-
picted in Fig. 1. The Remote Server is the element responsible
for ensuring the persistency and the consistency of the data.
It contains a data layer and is responsible for generating the
events necessary to propagate the correct communication of
the information to and from all client machines. The client
architecture comprises two key elements: the main controller,
represented by the ABC4GSD Client box, and the ABC App
Interface. The ABC4GSD Client is the main component
hosted on each client workstation. It acts as a broker between
the remote server and the client applications by dispatching
messages generated locally and directed to the remote server
and vice versa. The ABC4GSD Client can be a stand-alone
application running on the client host machine or an Eclipse

'Gnome Shell released with Gnome version 3 (http://www.gnome.org/).

ABC App
Interface

App_11

ABC App
Interface

App_M1

Local machine 1

ABC4GSD
Client

Remote | __________________Soveeeer_

Server |
' .
. .
1 Local machine N

High-level architecture components.

Remote machine

Fig. 1.

plug-in. The purpose of the ABC App Interface is to provide
a common way to interact between the system and the appli-
cations. Applications have to adhere to this specific interface
to be fully integrated in the system. This component provides
functionalities to send and receive messages and subscribe or
unsubscribe to events. It also defines a list of methods that have
to be implemented to have both the ABC4GSD Client control
some behavior of each application and the applications react
to events. Such a mechanism allows the automatic integration
of response behaviors as we will introduce in the next section.

All communication between the remote server and the
ABCAGSD client as well as between the ABC4GSD client
and the interfaces have been implemented using ZeroMQ?Z.
This is a messaging library that allows the design a complex
communication system through intuitive APIs also providing
messaging patterns like publish-subscribe or request-reply.

All additional client elements are treated as independent
applications, i.e., concrete external processes, for which, oper-
ative system calls are used to launch and terminate them. This
design decision has been taken to maximize the decoupling of
each component allowing the just in time (JIT) insertion or
substitution of one element with another one. Further tackling
components independence, artifacts are bound indirectly to
applications by storing the ‘need’ that an application have to
support to utilize the artifact. As an example, an application
that needs to handle pdf artifacts would be represented by an
identification string (e.g., ‘pdfViewer’), which at every client-
side can be flexibly bound to a specific application (e.g., Skim
for workstations using MacOS, Foxit Reader for those running
Windows systems, or an ad-hoc viewer implementing the ABC
App Interface).

A. User Interface Overview

All components of the ABC4GSD Client application are
Eclipse plug-ins deployed on an independent application built
as an Eclipse RCP’ application. Therefore, all plug-ins devel-
oped for the ABC4GSD Client application can be deployed di-
rectly within the Eclipse platform to enhance the main Eclipse
application. However, our research effort is not aimed at
providing specific tools for GSE nor at the enhancement of one
of them. Rather, we want to explore how (i) integration and co-
ordination mechanisms such as those provided by ABC4GSD
can provide to SE tools a more flexible mechanism facilitating
application interoperability, and (ii) by means of the ABC
metaphor, whether we can provide better support for work

Zhttp://www.zeromq.org
3Eclipse RCP. The Eclipse Rich Client Platform is a plug-ins subset of the
entire Eclipse platform that allows the development of independent application.

0066 ABCAGSD Client

3 Activiey View 1 3 Activity View Graph

¥implementation
Missing features

[# Package Explorer 53

Conclusion
Abstract
Full

¥ EFABCAGSD [svn ssh-//successLic

| CO— o

Artlfact
Vlew
Name [Status Working on-. | Name ocation

Paolo Online ABCAGSD & DesignDoc.pdf DAs\gnDuz nﬂ! par

& ascecso

Activity

View (A)
Contact
View

0 contact view

Repository: | svntssh://sficcess Lict.swin. edu.au
Username: [pate

Authentication

5 Artifact View

+) Use password autherfication

private key authfntication

ipse_repo

Resource opened
through the needs
mechanism

Latest ®
opened
resource

31Jz
3 0-Q | HCG | BSOS -
= 5)(@ Aciviy

Subclipse B
delegation .

Examples of
subscription
mechanism

ABCAGSD/A

g = "abc guun EI user.+." + u_id;
subsc add

SbscriveC a, nem CrdNewhetivityDetectedO) J;
q = "abc.relation.-."; Generic activity re

subs:rlutwn?em add(q) When the entity is r
subscribe(a, new CmdUpdate())

"abc.relation.+"; Generic Activity relation created
sub;mmunvam add(q);
beC q, new CmdUpdateC));

- nbzusar‘»umwnuvu—“
bs.

iy, k St ITING

subscribe(q, new (mdActivityChanged());

addtq);
en Cndpdate());
by." 4+ act + ".description”;

q
SbscriptionTenp. add(a);
subscribe g, new CndUpdate());

Yoo+ act;
subsmpmmmu ndn(u)
Br ubscribed q, new CndUpdate())

aq - nuu-y(abe acnlﬂqy [1. name.—-
for(String wip : aq

“iacks":"su_id);

@ Javadoc | [Declaration | & Console 33

e ved: abc.ecology 4591251@535515 set.+.46012520731936
P ey 4691220385616, asset. +. 469125207 31936

amcenruce - Received: abe.activity 409164125 <tate - {11002}
s sua - nb {{ maz))

Inf List will be updated and th
Pgrinnul zw o ROTIFICATION {"body": "Your nmvny et wiit be updated and the state se

i Activity successfully created ®

pine

105731
Il be updated and the state set to
mption.

Writable SVN Update: (0%)

Fig. 2. Overview of the ABC4GSD user interface.

fragmentation and help users in aggregating human and digital
resources in a GSE setting. In the following subsections we
provide an overview of each client-side component included
in the ABC4GSD user interface.

Activity View (Fig. 2-A): this is the component responsible
for displaying the list of activities in which a user is partici-
pating. The left hand side presents the user with a hierarchical
view of his/her activities. Through a double click, activities
can be resumed. This causes the population of the graph view
(top right quadrant), providing a detailed view of the resumed
activity. In both views, a contextual menu is available to access
commonly used functionalities (e.g., modification, removal,
cloning). The depth of the graph presented in the graph view
has been limited to three levels, which, besides avoiding a
cluttered overview, maps the activity hierarchy described by
Leont’ev (i.e., activity, action, operation).

Contact View (Fig. 2-B): this plug-in is designed to show
the people participating in the activity currently resumed, it
provides information about their status and the artifact each of
the users is working on (Fig. 2-E). At this stage, if a user is
connected but working on a different activity, both the activity
and the artifact are revealed.

Artifact View (Fig. 2-C): is used to list all digital artifacts
and general resources used inside an activity. It shows the
name, location, and type for each of them. A checkbox is
also provided to control the automatic loading of the artifact
during the resumption of the activity.

Notifications (Fig. 2-D): provided with the ABC appli-
cation interface, a common notification mechanism is shared
by all plug-ins. This component is able to visualize ad-hoc
temporary notifications. In the current version of the system
it has been used only to notify few events, e.g., the creation
of a new activity in which the user is involved (Fig. 2-D),
but could easily be extended to provide a more comprehensive

awareness support.

ABC-Enabled Eclipse: to perform this experiment the
Eclipse IDE has been enhanced by means of a plug-in designed
to act as middle man between the ABC4GSD system and
Subclipse*. Information about the currently loaded activity, the
user, and the artifact are sent to the plug-in upon resumption.
This allows the plug-in to retrieve the remaining information
querying directly the server and programmatically instructing
Subclipse to checkout or update the linked subversion reposi-
tory. The automation currently supported has been intentionally
limited to the checkout and update of the repository, which is
executed upon the loading of the resource, thus leaving the
commit process completely controlled by the user.

Most applications, in order to benefit and participate to
the middleware, need to implement the interfaces described
in the previous section to obtain a tight interaction (e.g.,
ABC enabled Eclipse). However, to obtain a more versatile
system, not limited only to applications implementing with
the interfaces, we decided to support a more shallow coupling
as well. In such a case, the control of their behavior—the
suspension and resumption life-cycle imposed by the ABC
paradigm—is directly controlled through operating system
calls invoked by the ABC4GSD Client (e.g., using Skim for
viewing pdfs).

Finally, to show the efficacy of the event system, the
business logic of all plug-ins described is implemented through
the subscription mechanism provided by the middleware. All
the updates are obtained by subscribing and automatically
responding to the events received with a small additional
coding effort. A code snipped is visible in Fig. 2 within the
Eclipse editor—the code is the implementation of the behavior
of the Graph View in the top right quadrant of the ABC4GSD
Client.

4subclipse.tigris.org

subclipse.tigris.org

IV. RESEARCH OBJECTIVE

Our primary goal in this study was to investigate the use of
the ABC4GSD system regarding the viability of introducing
an approach based on the concept of activity in the context of
GSE. To do this we designed a pilot expert evaluation driven
by scenarios (as described in [6]) investigating the perceived
usefulness, perceived ease of use, and self reported future
use in relation to an exemplar GSE environment augmented
by ABCA4GSD. Further, we included two additional variables
related to the aggregating capabilities of ABC4GSD and its
ability to help handling work fragmentation. The research
framework chosen to address these matters has been an
adapted version of the technology acceptance model (TAM)
[15], extended by two additional sets of questions addressing
aggregating capabilities and work fragmentation. Additionally,
the opportunity was also leveraged to gather feedbacks and col-
lect opinions about ABC4GSD. The key underlying research
questions (RQ) that were addressed by our study are:

e RQ1: How is the approach based on activities supported
by ABC4GSD perceived by the users? Do users perceive
ABCA4GSD as useful for the exemplar GSE activities, not
useful, or are they indifferent.

e RQ2: Is the approach based on activities supported by
ABC4GSD easy to use? Do users perceive ABC4GSD as
easy to use, difficult to use, or are they indifferent.

o RQ3: Would users adopt the approach based on activities
supported by ABC4GSD if it was widely available ? Would
users adopt our ABC4GSD and/or an activity-based ap-
proach to GSE work co-ordination.

e RQ4: Is the abstraction conveyed by the concept of
activity properly supported by ABC4GSD for organiz-
ing human and digital assets? Is having the structures
provided by ABC4GSD facilitating the coordination and
division of labor mechanisms necessary to be productive
when working in a distributed GSE team.

e RQS5: Does the activity life-cycle help in handling work
fragmentation? By using ABC4GSD is handling work
fragmentation easier, harder, or does there seem to be
no difference in how work fragmentation is handled.

In the following sections we describe the design of our
study, results obtained from twelve participants, key findings
from this study, and key directions for future research that we
have identified.

V. EXPERT EVALUATION
A. Theoretical Model

The Technology Acceptance Model (TAM) [9] aims at
assessing user beliefs about the usefulness and ease of use
of a technology by means of a questionnaire focused on two
variables: perceived usefulness and perceived ease of use.
According to Davis [9], perceived usefulness is defined as
“the degree to which a person believes that using a particular
system would enhance his or her job performance”; whereas,
perceived ease of use as “the degree to which a person believes
that using a particular system would be free of effort”. The
measuring model that was used in this study is the extended
version of the TAM model that was proposed in [15] and has
been adopted by previous studies (e.g., [1]). According to [15],
“since both usefulness and ease of use are correlated to self-
predicted future usage, they can be considered determinants of

TABLE 1. QUESTIONNAIRES.

Perceived Usefulness

PUsf.1 Using a system based on activities like ABC4GSD in my job would
enable me to accomplish tasks more quickly.

PUsf.2 Using a system based on activities like ABC4GSD would improve my
job performance.

PUsf.3 Using a system based on activities like ABC4GSD in my job would
increase my productivity.

PUsf.4 Using a system based on activities like ABC4GSD would enhance my
effectiveness on the job.

PUsE.5 Using a system based on activities like ABC4GSD would make it
easier to do my job.

PUsf.6 I would find a system based on activities like ABC4GSD useful in my
job.

Perceived Ease of Use

PEoU.1 Learning to operate ABC4GSD would be easy for me.

PEoU.2 I would find it easy to get ABC4GSD to do what I want it to do.

PEoU.3 | My interaction with ABC4GSD would be clear and understandable.

PEoU.4 I would find ABC4GSD to be flexible to interact with.

PEoU.5 It would be easy for me to become skillful at using ABC4GSD.

PEoU.6 I would find ABC4GSD easy to use.

Self-Predicted Future Use

SPFU.1 Assuming ABC4GSD would be available on my job, I predict that I
will use it on a regular basis in the future.

SPFU.2 I would prefer using ABC4GSD to one dependent on multiple appli-

cations for organizing my tasks within a collaborative environment.

Aggregation Capabilities

AC.1 Unifying my work practices through ABC4GSD is easy.

AC.2 Organizing work and consolidating information around the concept of
activity is useful.
AC.3 Sharing a document with a colleague is easy.

AC4 Using ABC4GSD makes the understanding of common outcomes
within a team easy.

AC.S5 ABC4GSD allows me to organize work and consolidate information
around the concept of activity.

AC.6 Organizing a team through ABC4GSD is easy.

AC.7 Having a common way to organize work through ABC4GSD is useful.

Work Fragmentation

WE.1 Being aware of events happening that pertain my work through
ABC4GSD is simple.

WE2 When using ABC4GSD, I am aware of who is doing what.

WE.3 When using ABC4GSD, I am aware of who is available.

WE4 When using ABC4GSD, I am able to understand who is responsible
for what.

WES5 When using ABC4GSD, I am able to be aware of the people I am
working with in each task and their status.

WE.6 Handling interruptions is simpler when using ABC4GSD.

WE.7 Having my activities organized by ABC4GSD reduces the effort
required to handle multiple tasks.

tool acceptance behaviors”. For each of the three variables the
related questionnaires were adapted to focus on ABC4GSD.
Moreover, as introduced in the previous section, we added
two sets of questions related to the aggregating capabilities of
ABCA4GSD and its ability to help handling work fragmentation.
The questions related to each of the investigated variables
are reported in Table I. Similarly to what has been used in
[9] and [15], each question was measured with a seven-point
Likert scale’, which allowed us to capture both positive and
negative evaluation as well as a neutral one to match the null
hypotheses.

SLikert scale parameters: (1) extremely likely, (2) quite likely, (3) slightly
likely, (4) neither, (5) slightly unlikely, (6) quite unlikely, (7) extremely
unlikely.

TABLE II. DEMOGRAPHIC SHEET.

D.1 Name

D.2 | Age

D.3 | Job title

D.4 | Gender

D.5 Computer literacy Novice Average Expert
D.6 Exp. in working as part of a team <1 year 1-3 yrs >3 yrs
D.7 | Exp. in working with collab tools <l year 1-3yrs >3 yrs
D.8 | Exp. in software engineering <l year 1-3yrs >3 yrs

TABLE III. OPEN-ENDED QUESTIONNAIRE.

Comments and Feedbacks

CaF.1 What did you like about ABC4GSD?

CaF.2 What did you dislike about ABC4GSD?

CaF3 What would you like to see improved in a future version of
ABC4GSD?

CaF4 What would you like to see included in a future version of ABC4GSD?

CaFE5 What was intuitive about the system?

CaF.6 | What was confusing about the system?

CaFE.7 Please make any additional comments below.

B. Method

Given the rather novel high-level activity life-cycle in-
teraction introduced by the ABC4GSD system, we opted to
expose study participants to the system through a scenario-
based approach. This method entails the design of scenarios
based on realistic settings exposing participants to complex
situations, which would otherwise be hard to observe [6]. Fig.
3, provides an overview of the experimental procedure. The
experiment was organized into three sessions as follows.

Part One — Demographics
Duration 20' -rle e
Screencast
Perceived
Usefulness
Perceived
Ease of Use
Part Two Self-Predicted
Duration 60' Future Use
Aggregation
Capabilities
Fragmentation

Duration 20' g

Comments and
Feedbacks

Fig. 3. Experiment breakdown.

In the first session, after signing the informed consent® and
filling out a basic demographic sheet (Table II), the participant
was introduced to ABC4GSD through a 15 minute screencast.
In this briefing session, a recorded video was chosen over a
presentation to limit bias and ensure repeatability. The video
provided an introductory tutorial to ABC4GSD. In particular,
it introduced the key concepts and the functionalities needed to
perform the scenarios, e.g., how to create and edit an activity,
how to log in the system, how to link human and digital assets
to an activity, and how to resume and suspend an activity.

This experiment was approved by the Swinburne University of Technology
Human Research Ethics Committee - SUHREC Project 2013-003.

In the second part, the participant was asked to perform
the three scenarios detailed below adopting a think-aloud
approach. Scenarios were treated as independent experiments,
and the execution sequence was assigned according to a latin
square randomization. After completing each scenario the
participant was administered the related questionnaire. For
each scenario, the participant was given a description of his/her
task introducing the simulated context, additional material was
also provided if needed (e.g., a fictitious organizational chart
needed to be aware of the available human resources), and
the required digital material placed on the desktop of the
workstation used. A set of scripts was used to instrument
ABC4GSD so that the participant could experience interaction
with remote team members’.

In the third part, the participant was administered a final
questionnaire comprising open-ended questions aimed at gath-
ering feedback and comments both positive and negative on
the system (Table III).

Self-reported quantitative data is thus the main data col-
lected during the evaluation obtained through questionnaires;
qualitative data were gathered through open-ended questions
during the final debriefing. Furthermore, additional data was
recorded. Interactions with the workstation were captured
through a screencast during each scenario (including audio);
notes were taken by the main investigator; and system event
logs were recorded by capturing timestamps of participant’s
interactions with the system while performing the scenarios.

C. Scenarios

We summarise the three scenarios we used for our study.
We chose these as exemplar activities that are common in
a range of GSE teams and that often lack appropriate co-
ordination support. Considering also the several challenges
identified by Tamburri et at. regarding GSE social structures
[31], we selected some activities that required a variety of
tasks to be carried out, artifacts to be used or modified, and
participants to carry out sub-activities handed over by remote
team members.

Organization of a new project: the participants were asked
to play the role of a GSE project manager in the process of
organizing his/her team for a new distributed project regarding
detailed analysis of three candidate software architectures for a
complex system. The participants had to decide independently
the granularity of the activities to be created, the people to
assign to each activity, the description to provide, and whether
or not to assign particular artifacts from a set of available ones.
The participants were provided with a hard copy of the orga-
nizational chart describing the human resources available, and
a possible (but by no means the only) solution for the division
into subtasks. Moreover, a fictitious digital document for the
requirements as well as three software architecture candidate
solutions were present on the workstation local desktop. This
scenario was designed to force the participant to experience
the aggregating capabilities of ABC4GSD by requesting the
detailed creation of several activities with several available
team members, some distributed and some local. Moreover,

"This pilot evaluation did not comprise scenarios including several real
remote users. This will be the focus of the next rounds of our experiments in
which ABC4GSD will be evaluated against the distances characterizing GSE.

by performing this scenario, the participants were required to
organize a team using the metaphor of activity.

Fixing a bug: the participants were asked to act as a
developer. While working on an implementation activity, an-
other activity involving him/her was automatically created. The
activity description mentioned an urgent bug in a specified
software artifact that needed to be fixed as soon as possible.
To successfully complete this task, the participant needed to
realize the message received through the notification system
and act accordingly. Not realizing the message was considered
a failure in the scenario. As in [6], the consideration regarding
the level of awareness of the participant adhered to the
following scheme:

e participants were evaluated fully aware when they had
spontaneously noticed the notification;

e they were evaluated partially aware if they noticed the
notification after being prompted by the experimenter;

e they were considered unaware in all remaining cases.

The rational behind the use of this scenario was connected
to the ability of ABC4GSD to handle work fragmentation, to
keep users aware of events happening in their team, and to
delegate activities. Furthermore, the participants were able to
experience the integration of the Eclipse IDE.

Preparing for a presentation: the participants were asked
to act as a software architect on a GSE project. They were
asked to prepare for a meeting focusing on the evaluation
of the architecture of a system. At his/her office, he/she had
to prepare a presentation named “Architecture evaluation” for
driving the discussion during the presentation using his/her
personal machine. After quitting the system, he/she were
requested to simulate the visit to the company. Once in the
meeting room, using the local machine, he/she was asked to
resume the activity as left once suspended and deliver the
presentation. In addition, the project manager required a copy
of the presentation for future use. Therefore, the participant
was asked to create an activity to which only the presentation
and the project manager had to be linked to. With this scenario
we focused on the activity roaming principle of ABC and the
ability of the system to share digital artifacts associated with
activities among distributed GSE team members.

D. Farticipants and Setup

For study participant recruitment, neither gender nor age
distinction was applied. In total, 12 participants were recruited
for this experiment (mean age 33) from ICT staff and stu-
dents of Swinburne University of Technology. A compulsory
requirement for their selection was related to their expertise
in SE and/or GSE. Therefore, recruited participants were
selected among PhD students or Professors heavily involved
in software engineering areas (D.8). Table IV, shows the
reported experience level in relation to the different experience
variables.

It can be seen that even though only slightly more than half
of the participants have worked with collaborative software
(D7) for more than one year, both the technical background
(DS5) and the level of experience in working as part of a team
(D6) range from medium (i.e., one to three years) to high (i.e.,
more than three years).

TABLE IV. PARTICIPANT EXPERIENCE.

Low Medium High

D.5 0 42 58
D.6 0 33 67
D.7 33 17 50
D.8 0 0 100

The experimental setup comprised a laptop connected to
an external monitor equipped with mouse and keyboard. This
setup allowed the main investigator to instrument the system
while the participant was filling out questionnaires. Finally
the server side of the infrastructure was hosted within the
Swinburne University of Technology premises.

VI. RESULTS

Table V provides an overview of the quantitative results
of the questionnaires. A discussion of the results including
insights from the open-ended questions administered in the
debriefing session is provided in the ‘Discussion’ section.

Perceived Usefulness: in general, ABC4GSD received very
good results from the evaluation. If on the one hand, the system
was perceived appropriate for performing task more quickly
(Table V-(a), PUsf.1), in an easier way (Table V-(a), PUsf.5),
and, overall, was perceived as potentially useful (Table V-
(a), PUsf.6); on the other hand, participants responses are less
positive when related to improved performance (Table V-(a),
PUsf.2), productivity (Table V-(a), PUsf.3), and effectiveness
(Table V-(a), PUsf.4).

Perceived Ease of Use: all participate managed to ap-
propriate the system with more or less confidence in a very
brief period of time through the video tutorial provided in the
briefing session. Even though we anticipated that on average
scores would have been worse due to the lack of attention
paid to usability aspects of the user interface, the participants
still found ABC4GSD easy to learn (Table V-(b), PEoU.1,
PEoU.5, and PEoU.6) and rewarded the intuitiveness of the
ABC paradigm.

Self-Predicted Future Use: also the self-predicted future
use variable questions scored well. Participants reported a good
likelihood of adopting our ABC4GSD for supporting their
future work (Table V-(c), SPFU.1), and expressed an interest
in using a system based on activity over the currently available
ones (Table V-(c), SPFU.2)

Aggregation Capabilities: the concept of activity has been
confirmed to be a powerful metaphor to provide a useful (Table
V-(d), AC.7) aggregating tool (Table V-(d), AC.5). Being
designed to support collaboration, not surprisingly, the easiness
of sharing documents has been confirmed by the evaluation
participants (Table V-(d), AC.3). However, some aspect of the
system like the easiness of organizing a team (Table V-(d),
AC.6) or the understanding of the common goals (Table V-(d),
AC.4) scored slightly less. This will be analyzed in Section
VIII and our initial hypothesis strongly related such results
with the lack of attention given to usability during the design
of the user interface.

TABLE V. QUESTIONNAIRES RESULTS. SCORES ARE ON A 7-POINT
LIKERT SCALE FROM 1 (EXTREMELY LIKELY) TO 7 (EXTREMELY
UNLIKELY). NOTE: (1) AVERAGE; (Z) MEAN; (0) STANDARD DEVIATION.

”w T o
AC1 | 213 200 0.78
AC2 | 204 200 1.06
AC.3 1.58 1.00 0.81
AC4 | 213 200 1.05
AC.5 179 2.00 0.64
AC.6 1.92 200 095
AC.7 .79 2,00 0.82

PUsf.1 1.97 200 093
PUsf2 | 2.17 2.00 0.87
PUsf3 | 219 200 0.84
PUsf4 | 2.14 200 0.89
PUst.5 1.94 2.00 1.03
PUsf.6 1.81 200 0.84

(d) Aggregation capabilities.

N T o

WE.1 1.92 200 081
WE.2 1.96 200 0.84
WEFE.3 1.58 1.00 1.04
WF4 | 204 200 093
WE.5 1.67 1.00 0.90
WE6 | 250 2.00 1.15
WE7 | 217 200 099

PEoU.1 | 2.06 200 1.33
PEoU.2 | 233 200 147
PEoU3 | 2.19 2.00 1.24
PEoU4 | 247 2.00 1.44
PEoU.5 1.67 1.00 091
PEoU.6 1.81 150 1.02

(b) Perceived ease of use. (©) Work fragmentation.

m T o
SPFU.1 | 217 200 1.17
SPFU.2 1.89 200 097

(c) Self-predicted future use.

Work Fragmentation: in general, participants found the
system able to support work fragmentation. Responses re-
garding the awareness of available team members (Table V-
(e), WE.3) and team composition (Table V-(e), WE.5) scored
very well. However, it needs to be highlighted that even if
participants found the ABC4GSD system able to release the
mental overhead related to the handling of multiple tasks
(Table V-(e), WE.7), they scored less its ability to handle work
fragmentation (Table V-(e), WFE.6). Reasons for this result will
be further discussed in Section VIII.

VII. THREATS TO VALIDITY

Farticipants affiliation: participants in our experiment were
recruited from members of the SUCCESS research centre®.
While all participants satisfy the selection constraints we set,
it does potentially represent a bias, even though it is a common
practice for pilot studies such as ours.

Learning effect: the three scenarios that we constructed for
our experiment have been treated as independent experiments
for the purposes of this study and our analysis. To avoid
bias in the results related to the execution sequence, and thus
to mitigate the impact of the learning effect, scenarios were
randomly assigned using latin square (with 12 participants
we performed two instances of each permutation of the 3
scenarios).

Process validity: one threat that had to be carefully con-
sidered is related to the realism of the GSE scenarios that
we designed for our experiment. To assure that the scenarios
would be representative of real GSE team situations they were

8http://www.swinburne.edu.au/ict/success/

designed and agreed by the authors following an iterative
process. This was intended to guarantee that the participant
would be exposed to the key challenges investigated in this
research, i.e., aggregation capabilities and work fragmenta-
tion, while at the same time build an educated opinion of
ABC4GSD. Moreover, these scenarios were designed to mimic
three completely different situations representative of a GSE
environment, i.e., organization of a distributed GSE team
project, preparation for a presentation and sharing resources,
and implementation work.

Results validity: being a pilot experiment, the number of
participants was limited. Even though no statistical significance
or scalable or generalizable results were sought by this study,
we analyzed the reliability of the evaluation by looking at the
internal consistency of all the investigated variables using the
Cronbach’s alpha coefficient [4]. As can be seen from Table VI,
even considering the relatively small number of participants,
the « coefficient is good for all the variables but one. This
allows us to have confidence that the results, far from being
scalable or generalizable, are yet indeed reliable giving us
more confidence when confirming our research hypotheses.
The threshold for acceptable results is 0.7 [4]. In our case,
apart from the self-predicted future use variable (calculated as
less than 0.5, i.e., unacceptable), the remaining variables show
a good internal consistency (i.e., greater or equal than 0.8).

TABLE VI CRONBACH’S ALPHA FOR THE INVESTIGATED VARIABLES.
Variable «
Perceived Usefulness 0.82
Ease of Use 0.81

Self-predicted future use | 0.43
Aggregation Capabilities 0.82
Work Fragmentation 0.82

VIIL

The purpose of the ABC4GSD system is to smoothly
introduce the activity-based computing paradigm in to GSE
team environments to provide a tool able to tackle the chal-
lenges of distributed collaboration. Among these challenges,
we concentrated in this study on investigating the ability
of ABC4GSD to support aggregation of human and digital
resources through the activity metaphor as well as the ability
of the system to handle interruptions by means of the activity
life-cycle mechanism of suspension-resumption. In this section
we will discuss our findings from the pilot study of ABC4GSD
and outline key areas for future research we are planning based
on these results.

DISCUSSION

Overall, the experiment has indicated promising results
about our overall approach. In general, almost all participants
scored ABC4GSD and its activity-based co-ordination and co-
operation metaphor positively for each question. In particular,
the concept of activity was well received and participants
quickly understood the benefits the system brings in in terms
of facilitating collaboration, delegation, and resource sharing;
the activity life-cycle mechanism and awareness have been also
appreciated and one participant in particular reported: “I liked
the ability to resume tasks [...], this makes the whole activities
concept portable”; “I liked the fact that I can follow what I
have left before and what others are doing at the same time”.

http://www.swinburne.edu.au/ict/success/

However, several critical aspects have emerged, especially
from our analysis of the open-ended questionnaires. These
have helped us to provide a justification to some of the
scores given. We identified two major factors that have had
a stronger impact on participant perception: usability aspects
and effectiveness of the notification system.

Some encouraging results were reported in relation to the
perceived ease of use of ABC4GSD. However, we observed
from our video analysis that most participants initially strug-
gled to perform some of the tasks related to the scenarios. One
of them reported the impression of being partially constrained
in the process of creating an activity and aggregating the
required resources (mentioned verbatim in the open question
answer). Another notable result not visible from the aggregated
statistics is that users on average improved their scoring regard-
ing the ease of use of the system throughout the scenarios.
This demonstrates how, even given the novelty of the activity
metaphor, participants managed to quickly use the system and
were able to achieve their goals. On the other hand, almost all
participants gave suggestions and comments regarding possible
improvements in terms of usability. Most we plan to address
in our next implementation iteration. As an example, we will
revise the currently-used common interface design by adding
buttons directly on the main interface to allow a more intuitive
access to the main functionalities. We also want to provide
a smoother mechanism to aggregate digital resources (e.g.,
drag-and-drop capabilities) from the desktop and other open
applications.

Furthermore, it became clear that participants following a
specific order in the scenarios were less ‘shocked’ by the new
interaction mechanism than those that started the experiment
with the second scenario, i.e., Fixing a bug. This is certainly
related to the amount of novel interactions presented to the
users at once compared to having a gradual introduction
to the system. The tutorial, in fact, turned out to be less
effective then what was foreseen in terms of explaining to
participants the available functionalities, opposed to the more
hands-on approach provided by carrying out the scenarios.
Other researchers have lessened this issue by guiding the
participants through a training session in which they ask them
to mimic the experimenter’s operations directly by using the
system. When we repeat our study with more participants we
may try this approach as well.

Regarding the ability to handle interruptions, the scenario
of Fixing a bug was meant to test the ability of the system
to make the user aware of a situation directly concerning
their work, i.e., the creation of an urgent activity involving
the user. The results from this interruption scenario was less
encouraging than the overall ones. In fact, only 50% of the
participants were considered fully aware of the event by
noticing the notification pop up and acting accordingly by
either consciously delaying it or promptly resuming the new
activity. Three of the participants’ attention was captured by
the new item in the activity list rather than the notification
message, and one of them noticed the change of status of
the user Paolo that created the activity triggering his interest
in looking for the cause of such event. Thus, 33% of the
participants were classified as partially aware of the situation.
And 17% (2 out of 12) did not notice any changes in the
user interface and therefore were classified as unaware. Such

a result unveils a serious issue in the awareness mechanism
chosen for the system. A post analysis of the captured screen
videos showed that during the second scenario most partici-
pants were fully concentrated in solving the problem related to
the main activity thus following the instructions received. This
is a situation that is very close to a real working environment
in which practitioners try to avoid distractions in order to be
focused on their respective tasks. The notification pop up was
found to be not sufficiently effective in communicating crucial
information to the user. Even though some users suggested
that the problem could be related to the fact that such pop
ups were automatically fading out, we believe that more work
needs to be dedicated to finding a more effective awareness
mechanism, endorsing one of the key findings of the survey
on GSE organization presented in [31].

Moreover, it is interesting to note how throughout the sce-
narios, Yarosh’s statement about the diverse appropriation of
the activity concept observed in different users was confirmed
in our experiment. In their work, Yarosh et al. [38] described
the different patterns of usage they identified in their case
study and explained how the lightweight idea of an activity
can become a powerful tool. This is done by not constraining
the end user to specific workflows and instead providing a
flexible mechanism that can be utilized to fulfill the diverse
needs of practitioners. In GSE, this flexibility can be leveraged
to a further level that will be one of the foci of our next
experimentation round. Culture and language represent two of
the distances identified the most by research in the GSE context
together with time and location. Organizations, for instance,
might have a very hierarchical structure opposed to others with
an almost flat one. Once put in the position of collaborating,
these structurally diverse realities will find a strong clash with
regards to their organizational culture. Usually such a situation
would be led by aligning one of the two parties to the other.
However, a different solution could look at the possibility of
allowing the two entities to organize their work according
to their culture and support solely the provision of a bridge
between the two representations. A system like ABC4GSD
can provide support to these kind of differences in the culture
by allowing different representations of the same common
activity. Such a scenario, as long as the consistency in terms
of the common motive is granted, would allow differences,
for instance the example related to organizational culture just
exposed, to coexist.

Finally, the current prototype lacks communication fea-
tures, which will be tackled in our next implementation it-
eration. Nonetheless, two participants overcame this limitation
in the second scenario (i.e., Fixing a bug) by using the text
document provided to notify Paolo (i.e., the creator of the
activity requiring urgent attention) that the bug had been fixed.
Even though confirming the shortage, the initiative taken by
the two participants confirmed the ability of ABC4GSD to
provide a flexible tool.

IX. SUMMARY

The ABC4GSD system is a middleware technology that
aims at transparently introducing the principles of ABC in
regular operative systems by making use of the theoretical
constructs provided by activity theory in order to lessen known
coordination, collaboration, communication, and awareness

issues proper of computer-mediated cooperation, which are
exacerbated in the context of GSE. ABC4GSD has been
designed to support Norman’s vision of releasing users from
mental overheads when interacting with the computer. After
performing the pilot expert evaluation herein reported, we
are confident in stating that the direction taken can and does
provide a concrete support for GSE users, which constantly
face challenges ascribable to cultural, linguistic, temporal, and
geographical distances.

The evaluation has shown that common problematics
proper of computer-mediated collaboration like sharing re-
sources with remote colleagues and handling interruptions
while working can be effectively supported by a metaphor
grounded in activity theory. Research however needs to be
done on how to quickly introduce this novel metaphor in
a regular operative system as the evalution has shown that
users tend to apply their existing knowledge based on the
file and application metaphor. Feedbacks collected unveiled
many usability concerns that might have tampered with a
faster appropriation of ABC4GSD, which will be tackled in
the next implementation iteration. Besides including commu-
nication functionalities, in our future research we will focus
more specifically on investigating the system capability of
concurrently supporting diverse representations of the same
activity, a problem this, which so far is often mitigated by
the adoption of a middleman in charge of liaising with teams
distant in terms of culture and language.

ACKNOWLEDGMENT

The authors would like to thank all the participants to the
experiment. We also thank the IT support team of Swinburne
University of Technology for helping in deploying the infras-
tructure.

REFERENCES

[1] M. A. Babar, D. Winkler, and S. Biffi. Evaluating the Usefulness and
Ease of Use of a Groupware Tool for the Software Architecture Eval-
vation Process. In Empirical Software Engineering and Measurement.
First International Symposium on, 2007.

[2] 1. E. Bardram. Activity-based computing for medical work in hospitals.
ACM Trans. on Computer-Human Interaction (TOCHI), 2009.

[3] I.T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson. FASTDash:
a visual dashboard for fostering awareness in software teams. Proc. of
the SIGCHI conference on Human Factors in computing systems, 2007.

[4] J. M. Bland and D. G. Altman. Statistics notes: Cronbach’s alpha. 1997.

[5] G. Booch and A. Brown. Collaborative development environments.
Advances in Computers, 2003.

[6] G. Convertino, D. C. Neale, L. Hobby, J. M. Carroll, and M. B. Rosson.
A laboratory method for studying activity awareness. In Proceedings
of the third Nordic conference on Human-computer interaction, 2004.

[71 D. Damian, F. Lanubile, and T. Mallardo. On the need for mixed media
in distributed requirements negotiations. /EEE Trans. on Sw. Eng., 2008.

[8] D. Damian and D. Moitra. Guest Editors’ Introduction: Global Software
Development: How Far Have We Come? IEEE Software, 2006.

[91 FE D. Davis. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q., 1989.

[10] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Fine-grained
management of software artefacts: the ADAMS system. Software:
Practice and Experience, 2010.

[11] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and
experiences. Communications of the ACM, 1991.

[12] J. Herbsleb. Global software engineering: The future of socio-technical
coordination. Future of Software Engineering, 2007.

[13]

[14]

[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Introducing collab-
oration into an application development environment. Proceedings of
the ACM conference on Computer Supported Cooperative Work, 2004.

M. Jiménez, M. Piattini, and A. Vizcaino. Challenges and improvements
in distributed software development: a systematic review. Advances in
Software Engineering, 2009.

O. Laitenberger and H. M. Dreyer. Evaluating the usefulness and the
ease of use of a Web-based inspection data collection tool. In Software
Metrics Symposium. Metrics. Proceedings. Fifth International, 1998.

M. Lang and J. Duggan. A Tool to Support Collaborative Software
Requirements Management. Requirements Engineering, 2001.

F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino. Collaboration
Tools for Global Software Engineering. IEEE Software, 2010.

F. Lanubile, T. Mallardo, and F. Calefato. Tool support for geograph-
ically dispersed inspection teams. Software Process: Improvement and
Practice, 2003.

A. N. Leont’ev. Activity, Consciousness, and Personality. Prentice-Hall,
1978.

M. Mangan, M. Borges, and C. Werner. A middleware to increase
awareness in distributed software development workspaces. Proc.
WebMedia and LA-Web., 2004.

P. Mukherjee, A. Kovacevic, M. Benz, and A. Schiirr. Towards a Peer-
to-Peer Based Global Software Development Environment. In Software
Engineering, 2008.

J. Noll, S. Beecham, and I. Richardson. Global software development
and collaboration: barriers and solutions. ACM Inroads, 2010.

D. Norman. The Invisible Computer: Why Good Products Can Fail, the
Personal Computer Is So Complex, and Information Appliances Are the
Solution. 1999.

J. Portillo-Rodriguez, A. Vizcaino, M. Piattini, and S. Beecham. Tools
used in Global Software Engineering: A systematic mapping review.
Information and Software Technology, 2012.

M. Purvis, M. Purvis, and B. Savarimuthu. Facilitating collaboration in
a distributed software development environment using P2P architecture.
Int. Workshop on Agents and P2P Computing (AP2PC ’06), 2008.

T. Rattenbury and J. Canny. CAAD: an automatic task support system.
In SIGCHI conf. on Human factors in computing systems, 2007.

K. Schmidt. The critical role of workplace studies in CSCW. 1999.

B. Sengupta, S. Chandra, and V. Sinha. A research agenda for
distributed software development. Proceedings of the International
Conference on Software Engineering, 2006.

I. Steinmacher, A. Chaves, and M. Gerosa. Awareness Support in
Global Software Development: A Systematic Review Based on the 3C
Collaboration Model. In Collaboration and Technology. 2010.

J. Suzuki and Y. Yamamoto. Leveraging distributed software develop-
ment. Computer, 1999.

D. A. Tamburri, P. Lago, H. V. Vliet, and E. Di Nitto. On the Nature
of GSE Organizational Social Structures: An Empirical Study. In Int.
Conf. on Global Software Engineering (ICGSE), 2012.

P. Tell and M. A. Babar. Requirements for an infrastructure to support
Activity-Based Computing in Global Software Development. In Int.
Conf. on Global Software Engineering Workshop (ICGSEW), 2011.

P. Tell and M. A. Babar. A Systematic Mapping Study of Tools for
Distributed Software Development Teams. Technical Report TR-2012-
161, Oct. 2012.

P. Tell and M. A. Babar. Activity Theory Applied to Global Soft-
ware Engineering: Theoretical Foundations and Implications for Tool
Builders. In Int. Conf. on Global Software Engineering (ICGSE), 2012.
V. Trapa and S. Rao. T3 - tool for monitoring agile development. Agile
Conference, 2006.

S. Voida, E. D. Mynatt, and W. K. Edwards. Re-framing the desktop
interface around the activities of knowledge work. Proc. of the annual
ACM symp. on User Interface Software and Technology (UIST), 2008.
J. Whitehead. Collaboration in software engineering: A roadmap.
Future of Software Engineering (FOSE ’07), 2007.

S. Yarosh, T. Matthews, T. P. Moran, and B. Smith. What Is an Activity?
Appropriating an Activity-Centric System. In Proc. of the IFIP TC 13
Int. Conf. on Human-Computer Interaction: Part II (INTERACT), 2009.

	Introduction
	Background and Motivation
	Tools for GSE
	Approaches Based on Activity Theory

	ABC4GSD
	User Interface Overview

	Research Objective
	Expert Evaluation
	Theoretical Model
	Method
	Scenarios
	Participants and Setup

	Results
	Threats to Validity
	Discussion
	Summary
	References

