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Abstract—Software Architecture (SA) plays a critical role 
in developing and evolving cloud-based applications. We 
present a Reference Architecture (RA) for designing Cloud-
based Tools as a service workSPACE (TSPACE) - a platform 
for provisioning chain of tools following the Software as a 
Service (SaaS) model. The TSPACE RA has been designed by 
leveraging well-known design principles and patterns and has 
been documented using a view-based approach. The RA has 
been presented in terms of its context, goals and design 
elements by describing the requirements, design tactics, and 
components of the RA. We evaluate the RA in terms of 
completeness and feasibility. Our proposed RA can provide 
valuable guidance and insights for designing and implementing 
concrete software architectures of TSPACE.  

Keywords— Cloud Computing, Tools as a Service (TaaS), 
Software Architecture, Reference Architecture (RA), Ontologies. 

I. INTRODUCTION  
Software Engineering (SE) in general and software 

architecting in particular need to be supported by several 
tools to perform different activities such as software 
architecture (SA) significant requirements analysis, SA 
design and evaluation. Traditionally the tools (i.e., individual 
tools or integrated environments) are offered as desktop or 
web-based solutions that require frequent configurations, 
installations and infrastructure management of the tools. 
With the increasing adoption of Cloud Computing as a 
flexible and reliable technology for Information 
Communication Technology (ICT) infrastructure 
management [1], several commercial and research efforts are 
focused on provisioning of Cloud-based Tools as a Service 
(TaaS) (e.g., cloud-based IDE Cloud91, online diagramming 
tool Gliffy2 and several other efforts reported in [2, 3]). 

Whilst Cloud Computing provides a viable and flexible 
technological infrastructure to provision individual 
applications as Platform as a Service (PaaS) and Software as 
a Service (SaaS) models using underlying Infrastructure as a 
Service (IaaS) cloud [1], TaaS presents several unique 
challenges [3].  Some of the key challenges include bundling 
and provisioning a set of tools together in a tool chain as 
often more than one tool is required to perform the tasks, 
providing access to the artifacts and data that are managed in 

                                                             
1 https://c9.io/ 
2 http://www.gliffy.com 

different tools, and providing support for the activities that 
are carried out by the users of different tools [3, 4]. To 
address these challenges, there is a need of having a cloud-
based TSPACE that can bundle and provision a set of tools 
as part of a tool chain (tool suite). A TSPACE is an 
aggregated platform that facilitates activity or task specific 
tools selection and provisioning, provides integration among 
heterogeneous types of the artifacts managed by the tools in 
a TSPACE and raises awareness of the stakeholders’ 
activities (that are performed using the provisioned tools). A 
TSPACE instance is instantiation of TSPACE with a 
selected set of the tools for a specific project. 

Our research effort has been motivated by the need of 
providing the key specifications and architectural guidelines 
in terms of a Reference Architecture (RA) based on the 
Service Oriented Architecture (SOA) principles [5] for 
designing a TSPACE.  A software RA maps division of 
functionality together with data flow between the pieces onto 
software elements and data flow between the elements [6]. A 
RA provides a standardization and an abstraction of a 
concrete software architecture (SA) for a specific domain, 
facilitates the reuse of design knowledge and reduces the 
cost of creating new design solutions for respective domains 
[6]. We foresee that the proposed TSPACE RA will make it 
easier to design new cloud-based workspaces and will 
facilitate their software development process. The 
description of the TSPACE RA details the functionalities to 
be supported, architecture design decisions made, and 
different abstractions of the RA. In this paper, we focus on 
RA for SA domain, although the architectural concepts and 
design decisions presented in this paper are generic enough 
to be applied to other domains. Whilst in our previous work 
we have discussed implications of TaaS in broader context 
[3, 4], the main contributions of this paper are: 

• We present an ontology-model to characterize TSPACE 
and to design concrete architecture for providing 
TSPACE. We also briefly discuss how the presented 
ontology-model can be transformed into a set of concrete 
ontologies that formalize the tools selection, tools 
provisioning and semantic integration among the artifacts 
in TSPACE. 

• We provide a detailed description of the TSPACE RA in 
terms of requirements, development view and logical 
view as recommended by view based approaches [7]. We 
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also provide a brief overview of the solutions that are 
used to implement the RA prototype.  

• We demonstrate the use of well-known design principles 
and architectural patterns for designing and reasoning of 
TSPACE architecture. The description of the used 
patterns and their pros and cons can provide guidance for 
implementing the RA for different domains. 

In this paper, we are focusing at the architecture level 
description of the RA without going into low level 
algorithmic details. The organization of the paper is as 
follows.  Section II describes our approach for designing and 
reporting the RA. Section III provides the background and 
the requirements of the RA. Section IV elaborates the key 
architecture design principles. Section V describes the RA 
modules and components at different levels of abstraction. 
Section VI reports the evaluation, Section VII describes 
related work and Section VIII concludes the paper.  

II. DESCRIBING THE REFERENCE ARCHITECTURE 
Since a RA provides valuable guidelines for designing a 

concrete architecture, it is important to describe a RA as 
comprehensively as possible and in an easy-to-understand 
way. We describe the proposed RA using a systematic 
approach that advocates the use of context, goal and design 
dimensions of a RA documentation as described in [6].Table 
I lists our TSPACE solution approach corresponding to the 
different dimensions.  

TABLE I.  TSPACE REFERENCE ARCHITECTURE'S DIMENSIONS 

Dimension Sub-dimension TSPACE Solution 
Context Who defines it? It is defined as a part of a 

research project. 
Where will it be 
used? 

It aims to facilitate 
implementation and evaluation of 
a TSPACE for industrial trials. 

What is the 
maturity stage of 
the domain? 

The corresponding architecture 
domain is considered as 
preliminary because to the best of 
our knowledge, comprehensive 
solutions are not yet available.  

Goal Why is it defined? It aims to facilitate the design of a 
concrete TSPACE by providing 
the development and logical 
views. 

Design What is 
described? 

The RA is described in terms of 
high-level modules, connectors, 
details of the modules in terms of 
components using logical view 
and design principles of the RA. 

How is it 
described? 

It is described using textual 
description and diagrams. 

How is it 
represented? 

We have shown high-level 
representations using semi-formal 
approaches with the help of lines 
and boxes. 

Instantiation How is it 
instantiated? 

We have instantiated the RA by 
implementing its prototype. 

Evaluation How is it 
evaluated? 

We have evaluated the RA using 
scenarios for functional 
requirements and quality 
parameters; and assessed its 
feasibility with a prototype. 

The context dimension covers the purpose, the 
development organization, and maturity stage (e.g., 
preliminary or classic) of a RA [6]. The goal dimension 
encompasses business goals and quality attributes as well as 
the purpose of defining a RA (e.g., to standardize concrete 
architecture or to facilitate design of concrete architecture). 
The design dimension elaborates whether the RA is concrete 
or abstract; whether the RA has been described using formal, 
semiformal or informal approaches. The RA encompasses 
tools selection, tools provisioning, semantic integration 
among the artifacts and awareness of the users activities 
during TSPACE lifecycle. We have extracted and 
synthesized tools selection and provisioning part of the RA 
based on a systematic review of cloud provisioning 
architectures. The complete list of referred architectures can 
be found in our technical report [8]. The RA part for 
semantic integration and awareness is a new proposition by 
us.  

III. REQUIREMENTS 
Our research on TSPACE has been motivated by the 

need to provide a workspace where all the required tools can 
be bundled in a tools suite and provisioned as a service. The 
TSPACE purports to enable user(s) to have on demand 
provisioning of tools and semantically integrated artifacts in 
a Just-in-Time (JIT) fashion. TSPACE requirements have 
evolved based on our previous work on considerations for 
TaaS infrastructure [3] and a review of the literature on 
important quality characteristics of cloud-based systems [8]. 
We have identified the functional requirements based on the 
key features required by the RA according to different 
lifecycle phases of a TSPACE, i.e., tools enactment and 
provisioning, semantic integration among the artifacts 
associated with tools after enactment and awareness of the 
stakeholders’ activities during tools’ lifecycle. The quality 
(i.e., non-functional) requirements are classified into two 
categories: i) quality requirements for cloud based solutions 
(QR1, QR2 and QR3) and ii) quality requirements of the RA 
(QR4, QR5, QR6) [9]. Table II lists TSPACE requirements.  

IV. ARCHITECTURE DESIGN STRATEGIES AND ELEMENTS  
We have designed the TSPACE RA for tools that are 

used to support software architecting activities such as 
architecture requirements description, architecture modeling 
and architecture evaluation. We have developed the RA 
experimentally and iteratively. For designing the RA, we 
followed the part-whole (functional decomposition) principle 
and several architecture styles [9]. Functional decomposition 
and part-whole principles help achieve a number of quality 
characteristics such as modifiability and integratability. 
Functional decomposition also makes it easy for practitioners 
and researchers to understand different components of the 
RA and to tailor it for their specific needs. We have used an 
ontology-based semantic integration approach to support 
flexibility (QR4) and interoperability (QR5). Ontology-based 
semantic integration enables the RA to accommodate 
different types of artifacts produced or consumed by 
different tools using standardized or proprietary formats. In 
the following subsections, we describe the design strategies 
to achieve the requirements that are listed in Table II. 
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TABLE II.  TSPACE REQUIREMENTS 

 ID Requirement 
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FR1 Provisioning: The RA should support 
provisioning of a TSPACE and associated tools 
according to the requirements of different 
activities to be carried out using the tools and 
constraints on tools enactment location. 

FR2 Semantic Integration: The RA should support 
semantic integration among the artifacts of 
different types as a TSPACE instance consists of 
multiple tools that can use different formats to 
store the artifacts. 

FR3 Awareness Support: Multiple artifacts are 
produced or consumed during the lifecycle of a 
specific project for which a TSPACE is 
instantiated. Hence, the RA should provide 
support for awareness of the users’ activities. 
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QR1 Automated Provisioning: A RA shall support 
automated provisioning of a TSPACE and 
encompassing tools. 

QR2 Multi-tenancy: Being a Cloud-based 
infrastructure, the TSPACE RA needs to be a 
multi-tenant [10] platform. Each TSPACE 
instance shall have its own set of tools and rules 
for awareness. A particular tenant shall be able to 
access all its specified features and 
configurations. 

QR3 Scalability: The RA shall scale as the number of 
activities that are performed using the tools 
increase. 
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QR4 Flexibility: As the tools in a specific instance of a 
TSPACE depend upon the activities to be 
performed within a project, the RA shall be 
flexible enough to provide semantic integration 
and awareness support for different types of 
tools. 

QR5 Interoperability: A RA shall provide semantic 
integration and awareness support for different 
types of artifacts (e.g. textual documentation and 
UML models). 

QR6 Completeness and Applicability: Completeness 
of the RA is important so that it can serve as a 
guiding model for designing a specific instance 
of a TSPACE. The applicability quality 
characteristic is important so that the RA can be 
used to design and evaluate a concrete 
architecture. 

A.  Use of Ontologies to Formalize TSPACE  
 We have used the ontologies to formalize a TSPACE 
because ontologies provide shared conceptualization and 
vocabulary that can be used to model a specific domain [12]. 
There is an ontology-model at the core of the proposed RA 
that characterizes the elements of a TSPACE and establishes 
the relations among the elements as shown in Figure 1. As 
we intended to concretize the TSPACE RA for the software 
architecture domain, the proposed ontology-model is based 
on ISO/IEC/IEEE 42010:2011 conceptual meta-model of 
architecture description [11]. The ontology-model shows the 
abstract elements of the TSPACE RA. A project’s 
stakeholders usually work with multiple tools provided by 
commercial vendors or Open Source community. These tools 
need architectural level support for interoperability so that 
the artifacts produced in different formats (texts, diagrams, 
standardized formats and proprietary formats) can be 

integrated with each other. Tool element (at top of the figure) 
in ontology-model represents the tools that can be 
provisioned in a TSPACE instance. The hosted tools can 
provide support for different types of activities and sub-tasks 
of those activities, which are represented by Activity element. 
The hosted tools can provide different types of features and 
can support different types of quality attributes (e.g., multi-
tenancy). In the ontology-model, the features and quality 
attributes of the tools are represented as tools’ capability.  

 We have leveraged semantic integration technologies to 
support interoperability, however the RA needs to be 
complemented by appropriate algorithmic solutions for 
information discovery from the tools. The RA needs to have 
a set of rules to support collaboration, awareness and 
information discovery of the related (traceable) artifacts as a 
project’s stakeholders usually perform the activities using 
different tools. The artifacts are part of high-level 
representation class (e.g., architecture view) that is shown by 
Artifact Representation element in the model. An 
instantiation of the TSPACE RA for a specific domain may 
require additional specializations of Artifact Representation 
concepts such as in the case of software architecting 
TSPACE, viewpoints and architecture views can be 
specializations of Artifact Representation. The proposed 
ontology-model provides flexibility to incorporate additional 
concepts by supporting dynamic composition and 
aggregation of different concepts in a TSPACE instance. 

 
Fig. 1. TSPACE Ontology-Model 

TSPACE Ontology element has four specializations as 
represented by ontology-model that is shown in Figure 1 and 
captures its elements and relations among the elements. The 
ontology-model consists of two main ontologies: Capability 
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Ontology and Artifact Ontology.  Annotation Ontology and 
Change Ontology complement the Artifact Ontology. The 
ontologies provide the basis for formalizing the tools 
selection process, establish the relationship among the 
artifacts that are produced or consumed in a TSPACE 
instance, and capture the activities (operations) that are 
performed on artifacts. Different components of the RA (to 
be discussed in Section V) use one or more of the TSPACE 
ontologies. Capability Ontology captures features that are 
supported by the tools registered with the TSPACE and 
users’ tools needs in a TSPACE instance. Artifact Ontology 
captures the relationship among the artifacts in a TSPACE 
instance. Annotation Ontology provides support to annotate 
the artifacts that are produced or consumed by the tools 
constituting a TSPACE and provides foundation to manually 
define or automatically recover trace links between artifacts 
based on the annotation rules. Change Ontology keeps track 
of the old and new versions of the artifacts in a TSPACE and 
raises awareness among users with notification according to 
Notification Rules. The ontologies are populated as different 
activities are performed using the tools in a TSPACE 
instance and are maintained in Resource Description 
Framework (RDF)3 data structure. Figure 1 shows abstract 
TSPACE ontologies and their relations with each other. 
Benefits: Our decision to use ontologies at the core of the 
RA appropriately formalizes the concepts about a TSPACE. 
It also makes the RA flexible and dynamic enough to 
accommodate different types of the tools. 
Challenges: Building ontologies for complex domains is a 
non-trivial undertaking. The process of building such 
ontologies requires expertise in domain knowledge for 
defining the high-level concepts and relationships between 
different artifacts of a TSPACE. The ontology-model 
presented in Figure 1 shows the high-level relationships 
between different concepts and artifacts of a Software 
Architecting TSPACE, which can be tailored and extended 
for other domains. 

B. Using SOA for TSPACE Façade 
For designing the façade of the RA, we used Service 

Oriented Architecture (SOA) [5] and REST architecture 
styles [13]. The tools associated with a TSPACE interact 
with the RA via its façade. 
Benefits: The use of SOA and REST makes it easy to 
modify the RA’s components and supports seamless 
integration of heterogeneous tools to be provisioned. 
Challenges: For certain tools, it may not be possible to write 
plug-in or probes to have direct interaction with a platform 
using SOA or REST interfaces. In such cases, intermediate 
glue code components may be required. 

C. Use of Centralized Repository Pattern to Share Abstract 
Ontology Templates 
We have used shared repository pattern [14] to provide a 

common Global Ontology Knowledgebase for TSPACE 
instances for multiple domains. A centralized ontology 
repository hosts standard abstract Artifacts Ontology, 
Annotation Ontology, Change Ontology and Capability 
Ontology for different domains. 

                                                             
3 http://www.w3.org/RDF/ 

Benefits: A centralized global ontology repository provides 
a single point of access to different ontologies of a TSPACE. 
It also positively addresses the flexibility characteristic 
(QR4) of the TSPACE RA.  
Challenges: A centralized repository pattern can become a 
performance bottleneck if there are multiple instances of a 
TaaS accessing the repository. This risk can be mitigated by 
having replication of the repository and a load balancer.  

D. Use of Pipes and Filter Pattern 
There can be a number of tools in a specific instance of 

TSPACE and the RA needs to support multiple TSPACE 
instances. The architectural support is needed to handle an 
increasing amount of data generated by multiple tools 
associated with each instance of a TSPACE. That is why we 
have used two-staged pipes and filters pattern [14] in the RA 
to meet the performance requirements of the platform. 
Benefits: The adoption of the two-staged pipes and filter 
architecture style provides a queuing mechanism to provide 
support for scalability and multi-tenancy. Pipeline based 
approach provides support to handle large volume of input 
data in processing queues. In the first stage, there is a 
common queue pipeline at which data from all the tools 
belonging to different instances of a TaaS are received. In 
the second stage, there are multiple queue pipelines 
corresponding to an instance of a TSPACE. The input data 
are sent to the queue of the corresponding tenant with the 
help of a monitoring filter. 
Challenges: If the input data streams scale rapidly, having 
only one monitoring filter may become a performance 
bottleneck. Multiple monitoring components can be attached 
to the first queue pipeline to address the scalability issue. 

E. Loosely Coupled Layers 
The layered architecture style [14] is widely used to 

provide loose coupling and separation of concerns in a 
system. We used the layered architecture at multiple levels of 
abstraction in the TSPACE RA. 
Benefits: The layered architecture style makes it easy to 
implement and evolve different components of the RA 
independent of each other, and plug in third party tools. 
Challenges: The layered architecture style requires explicit 
interfaces for components in each layer via which other 
layers can utilize its functionality. This may result in more 
effort while materializing the RA. Layered architecture can 
also have negative impact on performance. However, 
potential negative effects of the layered approach can be 
mitigated by incorporating performance improvement 
techniques for data retrieval such as data caching. 

F. Tenant Specific Semantic Integration, Information 
Discovery and Awareness 
Multi-tenancy is an important characteristic of *aaS 

model [10]. The proposed RA fulfills the multi-tenancy 
characteristic to provide proper isolation of tools and data of 
one tenant of a TSPACE instance from other tenants (QR2). 
The isolation between the architectural elements has been 
provided at two different levels of abstractions: i) between 
the ontology instances and corresponding RDF data stores 
(persistence) of each TSPACE instance of a specific tenant 
by having logical isolation among the components and ii) 
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between the tools provisioned in a TSPACE instance using 
virtual machine (VMs) of underlying IaaS cloud. 
Benefits: Logical isolation between TSPACE elements that 
maintain tenant specific information allows customization of 
TSPACE with respect to specific needs of each tenant. 
Challenges: Some domains with stringent multi-tenancy 
requirements may need adoption for more formal 
approaches. The WSO2 carbon platform [8] can be used to 
provide isolation between components of a TSPACE 
instance. The information flow authentication model based 
on security policy and role based authorization mechanism 
can be incorporated to implement security in multi-tenant 
access points [15]. The multi-tenant access and indexing 
techniques [8] can be used for multi-tenant persistence of 
ontologies and corresponding RDF data stores. 

V. TSPACE RA DESIGN, IMPLEMENTATION AND 
OVERVIEW OF PROVISIONED TOOLS 

We present the TSPACE RA at three levels of 
abstractions. First we describe the top-level modules; then 
we decompose those modules into components and sub-
components. There are some components that provide 
abstraction of the external systems (e.g., provisioning 
components) whereas other components are described in 
detail as part of the RA. The legend presented in Figure 2 
shows the notations that are used in the diagrams of the RA.  

A. First Level Decomposition 
According to the functional requirements, three lifecycle 

phases of tools (enactment and provisioning, semantic 
integration and awareness of activities) constituting 
TSPACE are supported by the TSPACE RA.  Figure 2 
provides an overall representation of the RA (development 
view). The modules at first level of decomposition are 
organized following the layered architecture style [9]. The 
TSPACE RA conceptually consists of three modules: i) 
Tools Selection and Provisioning Manager, ii) Semantic 
Integration Manager, and iii) Awareness and Information 
Discovery Manager.  

The Tools Selection and Provisioning Manager enables 
users to select the tools that are suitable for the activities to 
be performed and provision the tools using preconfigured 
Amazon EC24 VMs. TSPACE is implemented using JavaEE, 
SOAP and REST services technologies (JAX-RS5, JAX-
WS6). The Semantic Integration Manager supports semantic 
integration among artifacts that are maintained by the 
provisioned tools.  The Collaboration, Awareness and 
Information Discovery Manager helps extract the 
information that can be used to notify users about different 
events that are triggered in a TSPACE. The events are 
triggered according to the rules defined in an instance of 
TSPACE with respect to corresponding domain in which the 
RA is used. At the core of the RA, there is an ontology-based 
semantic integration model (Section IV.A). Each module is 
further divided into multiple components and sub-
components. Each component provides methods that can be 

                                                             
4 http://aws.amazon.com/ec2/ 
5 http://jax-rs-spec.java.net/ 
6 https://jax-ws.java.net/ 

invoked by components in other modules. We have used 
façade pattern [14] to support integration among components 
and modifiability. The decomposition at the first level fulfills 
the functional requirements discussed in Section III. 

 
Fig. 2. Overall Architecture of the TSPACE – Development View 

B. Second and Third Level Decomposition 
The decomposition of the Tools Selection and 

Provisioning Manager is based on requirements FR1 and 
QR1. FR1 deals with enactment of TSPACE based on the 
tools’ needs for the activities of a specific project and with 
respect to the location and resource constraints. QR1 deals 
with automation of the provisioning process. Decomposition 
of the Semantic Integration Manager is based on providing 
support for semantic integration among heterogeneous 
artifacts (FR2) and interoperability (QR5). Decomposition of 
the Awareness and Information Discovery Manager is 
designed to provide awareness to users about different 
actions that are performed on the artifacts using different 
tools constituting a TSPACE (FR3). We have also 
considered the interaction among different components to 
describe the behavioral model of the RA and have described 
it in terms of information exchange among the components.  

1) Tools Selection and Provisioning Manager: The 
components constituting this module provide support for 
tools selection and provisioning. The high-level views of the 
provisioning architectures synthesized in [8] inspire the RA 
and have been extended for TSPACE by incorporating the 
tools selection ontology (Section IV.A) that formalizes 
tools’ capability and users’ requirements for tools. 

Figure 3 shows decomposition of Tools Selection and 
Provisioning Manager. The Graphical User Interfaces 
(GUIs) provides an interface that supports users interaction 
and allows administrators to register tools with an instance of 
the RA, allows stakeholders to specify their tools’ 
requirements and supports administration activities. The 
Tools Repository Manager component maintains a repository 
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of tools that are registered with the system, the Capability 
Ontology model of each tool and the VMs that are to be used 
to host the tools. Tool Selector transforms a user’s tools’ 
requirements into a relevant ontology and compares it with 
the Capability Ontology of all the tools registered by the 
Tools Repository Manager by looking if the capabilities (e.g. 
features) required by the users are supported by the 
registered tools. Tools Enactment Preference Manager takes 
care of the constraints associated with the enactment of the 
tools. For example, location constraints require that all the 
tools for a specific instance of TSPACE shall be provisioned 
from a public or private IaaS clouds hosted in European 
Union territory. Cloud Enactment Engine enacts tools on an 
underlying IaaS cloud using IaaS Cloud Management APIs. 
In prototype of TSPACE, we are using Amazon EC2 IaaS 
cloud to host and provision individual tools using Amazon 
EC2 APIs7. If a private or hybrid IaaS is to be deployed, then 
a cloud management framework such as IBM Altocumulus 
Framework [8] can be used. 

 
Fig. 3. Tools Selection and Provisioning – Logical View 

2) Semantic Integration Manager: The components that 
are included in this module support semantic integration 
among the artifacts produced or consumed by the tools that 
constitute a TSPACE (FR2). There is an ontology based 
semantic integration model at the core of this module as 
described in section IV.A. We have implemented the 
ontology mechanisms using Apache Jena Framework8. 

Figure 4 shows the Semantic Integration Manager’s 
decomposition. Plug-ins (and GUIs) that are installed on the 
provisioned tools, link the tools with TSPACE APIs and 
provide Semantic Integration Manager a point of access to 
the tools. The RA supports the implementation of multiple 
instances of the TSPACE. The data sent from Plug-ins or 
GUIs are received at a Tenant Independent Data Collection 
Queue. A Data Monitor component monitors all received 
data elements and filters for forwarding to a Tenant Specific 
Data Collection Queue. There is at least one dedicated data 
collection (DC) queue for each tenant. If input data streams 
exceed beyond the acceptable threshold, data collection 
queues are replicated along with Data Monitor component. 
The monitoring and filtering rules are used by Data Monitor 

                                                             
7 http://aws.amazon.com/sdk-for-java/ 
8 https://jena.apache.org/ 

to identify tenants from the incoming data stream according 
to tenant identification specifications. 

We have designed a dedicated Transformation Module 
for each instance of the TSPACE. This module handles the 
data sent by Tenant Specific Data Collection Queues. The 
Transformation Module is further subdivided into multiple 
components. There are two types of ontology knowledge 
base in the RA: the Global Ontology Knowledgebase 
maintains the tool’s Capability Ontology and Artifact 
Ontology templates that establishes the relationships among 
all the possible concepts (the artifacts and their types) that 
can exist in a specific domain. The Local Ontology 
Knowledgebase maintains the relation between the concepts 
for a specific instance of a TSPACE corresponding to the 
tools included in the instance. Annotation Ontology and 
Change Ontology only provide annotation templates and 
change monitoring rules, and these do not need to have 
tenant specific instantiations. Ontology Builder and RDF 
Generator populates the root Artifacts Ontology based on 
the data inputs from Tenant Specific Data Collection Queue. 
In TSPACE prototype, Ontology Builder maintains the 
ontology in a proprietary tree like data structure in first stage, 
which is then transformed into RDF using Apache Jena 
Framework. 

 
Fig. 4. Semantic Integration – Logical View 

3) Notification and Information Discovery Managers: 
This module provides support to raise awareness about 
users’ activities (FR3) and provides support to trace the 
changes and the sources of the changes to the artifacts 
during the lifecycle of a TSPACE. These components 
leverage the RDF data store that is populated by Semantic 
Integration Manager and use information discovery rules 
for different types of change and trace notifications. 

 Figure 4 shows interaction of Notification Manager and 
Information Discovery Manager components with Semantic 
Integration Manager. RDF Data Store is the core of these 
components. The Annotation Manager acts as a data input 
source for Information Discovery Manager and Notification 
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Manager. Information Discovery Manager uses predefined 
information discovery rules that are stored in the information 
discovery data store. In the prototype implementation of the 
RA, we are using SPARQL9 queries for information 
extraction from RDF data stores. SPARQL provides a 
configurable and dynamic mechanism to query RDF data 
structures. Notification Manager generates the change and 
trace notification for the users using the tools according to 
the notification rules. The notification rules primarily guide 
for what information needs to be sent to users for trace and 
change notification, whether the users have subscribed for 
pull or push notification and what is the criteria and 
frequency for push notifications. 

C. A Case Study 
As a case study for proof of concept of the prototype 

implementation of TSPACE RA, we have integrated PakMe 
[16], a customized version of the decision support tool 
ArchDesigner and a modeling tool Microsoft Visio with the 
platform and provisioned them using Amazon EC2 Virtual 
Machine templates. PakMe and ArchDesigners are Web-
based tools. We have modified their GUIs to integrate those 
with the platform. Visio is a desktop-based tool that provides 
support for add-ins. We have implemented an add-in for 
Visio to integrate it with prototype implementation of the RA 
for SA TSPACE. A combination of tools that are 
maintaining the artifacts in their proprietary data structures 
within the tools (PakMe and ArchDesigner) and as a 
standalone standardized artifacts (Visio) is selected to 
demonstrate applicability of TSPACE semantic integration 
with tools of heterogeneous nature. The screenshot of the 
PakMe GUI and Visio add-in is shown in Figure 5. 

 
Fig. 5. Prototype GUI and Add-in 

                                                             
9 http://www.w3.org/TR/sparql11-query/ 

VI. EVALUATION 
Software architecture community has developed several 

methods for architecture evaluation such as Architecture 
Tradeoff Analysis Method (ATAM) and Software 
Architecture Analysis Method (SAAM) [17]. We have 
evaluated the completeness of the proposed RA for 
functional requirements (FR1, FR2 and FR3) and have used 
scenarios based evaluation for non-functional requirements 
(QR1, QR2, QR3, QR4, QR5 and QR6). Because of space 
limitation, we do not provide the complete details of the 
architecture evaluation using a scenario based method; rather 
we report the key reasoning points and outcomes of the 
evaluation decisions. Table III shows the mapping between 
the lifecycle phases, functional requirements and 
corresponding components from the high-level and 
decomposed architectural representations. It is clear that 
different parts of the RA provide support for all the phases 
and corresponding requirements (Req. ID).  

TABLE III.  REQUIREMENTS AND COMPONENTS MAPPING 

Life Cycle 
Phase 

Req. ID RA Components 

Tools 
Registration 

FR1 Capability Ontology and Tools Repository 
Manager 

Tools Selection FR1 Capability Ontology and Tools Selector 
Enactment and 
Provisioning 

FR1 Capability Ontology, Tools Enactment 
Preference Manager, Tools Enactment 
Engine and IaaS Cloud Management APIs 

Semantic 
Integration and 
Interoperability 

FR2, 
QR5 

Artifact Ontology, Tenant Independent 
and Tenant Dependent Data Collection 
Queues, Data Monitor, RDF Data Store, 
Ontology Builder and RDF Generator, 
Annotation Manager, Global Ontology 
Knowledgebase and Local Ontology 
Knowledgebase 

Awareness on 
the Activities 

FR3 Annotation Ontology, Change Ontology, 
Information Discovery Manager and 
Notification Manager 

We have presented the RA in terms of its goals that are 
transformed into functional and non-functional requirements, 
the TSPACE ontology-model, different modules and 
components of the RA at three levels of abstraction, and 
have explained interaction among the components of the RA. 
It covers all the important dimensions for reporting an RA as 
per [6] and the views of Rational Unified Process [7]. It also 
positively addresses the completeness of the RA (QR6). Our 
decision of using a layered approach supports separation of 
concerns among the components and high degree of 
modifiability. The Global Ontology Knowledgebase 
provides an abstract representation of the TSPACE 
ontologies and it is materialized using abstract data 
repository architecture style. It does not only achieve 
indirection in ontologies but also positively addresses 
flexibility and Integration (FR2). Façade pattern is used at 
the interface layer to provide interoperability (QR5) between 
the tools and the TSPACE RA. A pipes and filter pattern is 
used to support scalability for handling ontology 
construction for multiple instances of a TSPACE and to 
support multi-tenancy (QR2) in the ontology-based semantic 
integration. The adoption of ontology-based approach for 
tools selection, provisioning, integration, collaboration and 
awareness enables the RA applicability (QR6) for supporting 
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heterogeneous tools and activities in a TSPACE instance. 
Applicability of the reference architecture is further 
evaluated by implementing its prototype. 

VII. RELATED WORK 
Some efforts have been made to report the architecture of 

cloud-based tools but none of them provides a coherent 
solution covering all the required dimensions. Calvo et al. 
propose an architecture for textual information retrieval from 
cloud-based collaborative writing tools [18] but their effort is 
only limited to support automated feedback and process 
analysis of students’ academic assignment write-ups. 
Oliveira and Nakagawa propose a Service-Oriented 
Architecture for software testing tools [19]. Their work 
provides the detail on architectural requirements and a 
layered model to map tools onto the business process but 
does not cover a complete lifecycle of tools provisioning and 
operations. Integration approaches using service and 
graphical user end points have been reported in [20, 21]. An 
extensible architecture description language (xADL) to 
support integration among architecture centric tools is 
presented in [22]. Zhao et al. provide a survey of ontologies 
that have been proposed for software engineering [23]. We 
have proposed specialized ontologies for the TSPACE RA 
because the reported software engineering ontologies do not 
satisfy the specific needs of the RA. In comparison to the 
discussed existing work in the area, the TSPACE RA has 
been designed not only to support on demand tools 
provisioning but also to enable bundling of tools based on 
stakeholders’ needs and to provide a mechanism to raise 
awareness about the stakeholders’ activities using the 
bundled suite of tools. The TSPACE RA also supports 
semantic integration (using TSPACE ontologies) among 
artifacts consumed or produced during different activities 
that are performed using different tools that are likely to have 
proprietary data structures and process models. 

VIII. CONCLUSIONS 
We have presented and discussed the key motivators that 

have stimulated the requirements for the Tools as a Service 
Space (TSPACE) Reference Architecture (RA), an ontology-
based semantic integration approach that provides the 
backbone of the proposed RA and different views of the RA 
at multiple levels of abstractions. The presented RA 
introduces a standardized view of a TSPACE and has the 
potential of providing a number of benefits to practitioners 
and researchers. The RA can provide an increased 
understanding of the TSPACE for software architecting 
domain in particular and other engineering domains in 
general. The main aim of the RA is to facilitate the design of 
concrete TSPACE systems in various domains. The 
practitioners can use the RA to communicate a TSPACE 
instance’s requirements and the main architectural principles 
among software engineering teams. The researchers can use 
the RA for the identification of potential research areas. 
Investigation of the application of the existing traceability 
and information retrieval mechanisms in the context of the 
TSPACE to provide automated traceability and semantic 
integration among different types of artifacts is one direction 
for future research. We also intend to extend the RA 

ontology-model for other domains and analyze the RA 
components for the extended model. In the proposed RA, we 
have discussed security implicitly as part of the multi-
tenancy. In the future, we tend to enhance the RA by 
considering security as an explicit non-functional 
requirement.  
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