
Preprint Copy Distributed by Authors

A Reference Architecture for a Cloud-Based Tools as
a Service Workspace

Muhammad Aufeef Chauhan±1, Muhammad Ali Babar±1,2, Quan Z. Sheng2
±CREST-Centre for Research on Engineering Software Technologies1,2

1IT University of Copenhagen, Denmark
2The University of Adelaide, Australia

muac@itu.dk, {ali.babar, michael.sheng}@adelaide.edu.au

Abstract—Software Architecture (SA) plays a critical role
in developing and evolving cloud-based applications. We
present a Reference Architecture (RA) for designing Cloud-
based Tools as a service workSPACE (TSPACE) - a platform
for provisioning chain of tools following the Software as a
Service (SaaS) model. The TSPACE RA has been designed by
leveraging well-known design principles and patterns and has
been documented using a view-based approach. The RA has
been presented in terms of its context, goals and design
elements by describing the requirements, design tactics, and
components of the RA. We evaluate the RA in terms of
completeness and feasibility. Our proposed RA can provide
valuable guidance and insights for designing and implementing
concrete software architectures of TSPACE.

Keywords— Cloud Computing, Tools as a Service (TaaS),
Software Architecture, Reference Architecture (RA), Ontologies.

I. INTRODUCTION
Software Engineering (SE) in general and software

architecting in particular need to be supported by several
tools to perform different activities such as software
architecture (SA) significant requirements analysis, SA
design and evaluation. Traditionally the tools (i.e., individual
tools or integrated environments) are offered as desktop or
web-based solutions that require frequent configurations,
installations and infrastructure management of the tools.
With the increasing adoption of Cloud Computing as a
flexible and reliable technology for Information
Communication Technology (ICT) infrastructure
management [1], several commercial and research efforts are
focused on provisioning of Cloud-based Tools as a Service
(TaaS) (e.g., cloud-based IDE Cloud91, online diagramming
tool Gliffy2 and several other efforts reported in [2, 3]).

Whilst Cloud Computing provides a viable and flexible
technological infrastructure to provision individual
applications as Platform as a Service (PaaS) and Software as
a Service (SaaS) models using underlying Infrastructure as a
Service (IaaS) cloud [1], TaaS presents several unique
challenges [3]. Some of the key challenges include bundling
and provisioning a set of tools together in a tool chain as
often more than one tool is required to perform the tasks,
providing access to the artifacts and data that are managed in

1 https://c9.io/
2 http://www.gliffy.com

different tools, and providing support for the activities that
are carried out by the users of different tools [3, 4]. To
address these challenges, there is a need of having a cloud-
based TSPACE that can bundle and provision a set of tools
as part of a tool chain (tool suite). A TSPACE is an
aggregated platform that facilitates activity or task specific
tools selection and provisioning, provides integration among
heterogeneous types of the artifacts managed by the tools in
a TSPACE and raises awareness of the stakeholders’
activities (that are performed using the provisioned tools). A
TSPACE instance is instantiation of TSPACE with a
selected set of the tools for a specific project.

Our research effort has been motivated by the need of
providing the key specifications and architectural guidelines
in terms of a Reference Architecture (RA) based on the
Service Oriented Architecture (SOA) principles [5] for
designing a TSPACE. A software RA maps division of
functionality together with data flow between the pieces onto
software elements and data flow between the elements [6]. A
RA provides a standardization and an abstraction of a
concrete software architecture (SA) for a specific domain,
facilitates the reuse of design knowledge and reduces the
cost of creating new design solutions for respective domains
[6]. We foresee that the proposed TSPACE RA will make it
easier to design new cloud-based workspaces and will
facilitate their software development process. The
description of the TSPACE RA details the functionalities to
be supported, architecture design decisions made, and
different abstractions of the RA. In this paper, we focus on
RA for SA domain, although the architectural concepts and
design decisions presented in this paper are generic enough
to be applied to other domains. Whilst in our previous work
we have discussed implications of TaaS in broader context
[3, 4], the main contributions of this paper are:

• We present an ontology-model to characterize TSPACE
and to design concrete architecture for providing
TSPACE. We also briefly discuss how the presented
ontology-model can be transformed into a set of concrete
ontologies that formalize the tools selection, tools
provisioning and semantic integration among the artifacts
in TSPACE.

• We provide a detailed description of the TSPACE RA in
terms of requirements, development view and logical
view as recommended by view based approaches [7]. We

Preprint Copy Distributed by Authors

also provide a brief overview of the solutions that are
used to implement the RA prototype.

• We demonstrate the use of well-known design principles
and architectural patterns for designing and reasoning of
TSPACE architecture. The description of the used
patterns and their pros and cons can provide guidance for
implementing the RA for different domains.

In this paper, we are focusing at the architecture level
description of the RA without going into low level
algorithmic details. The organization of the paper is as
follows. Section II describes our approach for designing and
reporting the RA. Section III provides the background and
the requirements of the RA. Section IV elaborates the key
architecture design principles. Section V describes the RA
modules and components at different levels of abstraction.
Section VI reports the evaluation, Section VII describes
related work and Section VIII concludes the paper.

II. DESCRIBING THE REFERENCE ARCHITECTURE
Since a RA provides valuable guidelines for designing a

concrete architecture, it is important to describe a RA as
comprehensively as possible and in an easy-to-understand
way. We describe the proposed RA using a systematic
approach that advocates the use of context, goal and design
dimensions of a RA documentation as described in [6].Table
I lists our TSPACE solution approach corresponding to the
different dimensions.

TABLE I. TSPACE REFERENCE ARCHITECTURE'S DIMENSIONS

Dimension Sub-dimension TSPACE Solution
Context Who defines it? It is defined as a part of a

research project.
Where will it be
used?

It aims to facilitate
implementation and evaluation of
a TSPACE for industrial trials.

What is the
maturity stage of
the domain?

The corresponding architecture
domain is considered as
preliminary because to the best of
our knowledge, comprehensive
solutions are not yet available.

Goal Why is it defined? It aims to facilitate the design of a
concrete TSPACE by providing
the development and logical
views.

Design What is
described?

The RA is described in terms of
high-level modules, connectors,
details of the modules in terms of
components using logical view
and design principles of the RA.

How is it
described?

It is described using textual
description and diagrams.

How is it
represented?

We have shown high-level
representations using semi-formal
approaches with the help of lines
and boxes.

Instantiation How is it
instantiated?

We have instantiated the RA by
implementing its prototype.

Evaluation How is it
evaluated?

We have evaluated the RA using
scenarios for functional
requirements and quality
parameters; and assessed its
feasibility with a prototype.

The context dimension covers the purpose, the
development organization, and maturity stage (e.g.,
preliminary or classic) of a RA [6]. The goal dimension
encompasses business goals and quality attributes as well as
the purpose of defining a RA (e.g., to standardize concrete
architecture or to facilitate design of concrete architecture).
The design dimension elaborates whether the RA is concrete
or abstract; whether the RA has been described using formal,
semiformal or informal approaches. The RA encompasses
tools selection, tools provisioning, semantic integration
among the artifacts and awareness of the users activities
during TSPACE lifecycle. We have extracted and
synthesized tools selection and provisioning part of the RA
based on a systematic review of cloud provisioning
architectures. The complete list of referred architectures can
be found in our technical report [8]. The RA part for
semantic integration and awareness is a new proposition by
us.

III. REQUIREMENTS
Our research on TSPACE has been motivated by the

need to provide a workspace where all the required tools can
be bundled in a tools suite and provisioned as a service. The
TSPACE purports to enable user(s) to have on demand
provisioning of tools and semantically integrated artifacts in
a Just-in-Time (JIT) fashion. TSPACE requirements have
evolved based on our previous work on considerations for
TaaS infrastructure [3] and a review of the literature on
important quality characteristics of cloud-based systems [8].
We have identified the functional requirements based on the
key features required by the RA according to different
lifecycle phases of a TSPACE, i.e., tools enactment and
provisioning, semantic integration among the artifacts
associated with tools after enactment and awareness of the
stakeholders’ activities during tools’ lifecycle. The quality
(i.e., non-functional) requirements are classified into two
categories: i) quality requirements for cloud based solutions
(QR1, QR2 and QR3) and ii) quality requirements of the RA
(QR4, QR5, QR6) [9]. Table II lists TSPACE requirements.

IV. ARCHITECTURE DESIGN STRATEGIES AND ELEMENTS
We have designed the TSPACE RA for tools that are

used to support software architecting activities such as
architecture requirements description, architecture modeling
and architecture evaluation. We have developed the RA
experimentally and iteratively. For designing the RA, we
followed the part-whole (functional decomposition) principle
and several architecture styles [9]. Functional decomposition
and part-whole principles help achieve a number of quality
characteristics such as modifiability and integratability.
Functional decomposition also makes it easy for practitioners
and researchers to understand different components of the
RA and to tailor it for their specific needs. We have used an
ontology-based semantic integration approach to support
flexibility (QR4) and interoperability (QR5). Ontology-based
semantic integration enables the RA to accommodate
different types of artifacts produced or consumed by
different tools using standardized or proprietary formats. In
the following subsections, we describe the design strategies
to achieve the requirements that are listed in Table II.

Preprint Copy Distributed by Authors

TABLE II. TSPACE REQUIREMENTS

 ID Requirement

Fu
nc

tio
na

l R
eq

ui
re

m
en

ts

FR1 Provisioning: The RA should support
provisioning of a TSPACE and associated tools
according to the requirements of different
activities to be carried out using the tools and
constraints on tools enactment location.

FR2 Semantic Integration: The RA should support
semantic integration among the artifacts of
different types as a TSPACE instance consists of
multiple tools that can use different formats to
store the artifacts.

FR3 Awareness Support: Multiple artifacts are
produced or consumed during the lifecycle of a
specific project for which a TSPACE is
instantiated. Hence, the RA should provide
support for awareness of the users’ activities.

Q
ua

lit
y

(N
on

-f
un

ct
io

na
l)

R
eq

ui
re

m
en

ts

TS
PA

C
E

 Q
ua

lit
y

QR1 Automated Provisioning: A RA shall support
automated provisioning of a TSPACE and
encompassing tools.

QR2 Multi-tenancy: Being a Cloud-based
infrastructure, the TSPACE RA needs to be a
multi-tenant [10] platform. Each TSPACE
instance shall have its own set of tools and rules
for awareness. A particular tenant shall be able to
access all its specified features and
configurations.

QR3 Scalability: The RA shall scale as the number of
activities that are performed using the tools
increase.

R
ef

er
en

ce
 A

rc
hi

te
ct

ur
e

Q
ua

lit
y

QR4 Flexibility: As the tools in a specific instance of a
TSPACE depend upon the activities to be
performed within a project, the RA shall be
flexible enough to provide semantic integration
and awareness support for different types of
tools.

QR5 Interoperability: A RA shall provide semantic
integration and awareness support for different
types of artifacts (e.g. textual documentation and
UML models).

QR6 Completeness and Applicability: Completeness
of the RA is important so that it can serve as a
guiding model for designing a specific instance
of a TSPACE. The applicability quality
characteristic is important so that the RA can be
used to design and evaluate a concrete
architecture.

A. Use of Ontologies to Formalize TSPACE
 We have used the ontologies to formalize a TSPACE
because ontologies provide shared conceptualization and
vocabulary that can be used to model a specific domain [12].
There is an ontology-model at the core of the proposed RA
that characterizes the elements of a TSPACE and establishes
the relations among the elements as shown in Figure 1. As
we intended to concretize the TSPACE RA for the software
architecture domain, the proposed ontology-model is based
on ISO/IEC/IEEE 42010:2011 conceptual meta-model of
architecture description [11]. The ontology-model shows the
abstract elements of the TSPACE RA. A project’s
stakeholders usually work with multiple tools provided by
commercial vendors or Open Source community. These tools
need architectural level support for interoperability so that
the artifacts produced in different formats (texts, diagrams,
standardized formats and proprietary formats) can be

integrated with each other. Tool element (at top of the figure)
in ontology-model represents the tools that can be
provisioned in a TSPACE instance. The hosted tools can
provide support for different types of activities and sub-tasks
of those activities, which are represented by Activity element.
The hosted tools can provide different types of features and
can support different types of quality attributes (e.g., multi-
tenancy). In the ontology-model, the features and quality
attributes of the tools are represented as tools’ capability.

 We have leveraged semantic integration technologies to
support interoperability, however the RA needs to be
complemented by appropriate algorithmic solutions for
information discovery from the tools. The RA needs to have
a set of rules to support collaboration, awareness and
information discovery of the related (traceable) artifacts as a
project’s stakeholders usually perform the activities using
different tools. The artifacts are part of high-level
representation class (e.g., architecture view) that is shown by
Artifact Representation element in the model. An
instantiation of the TSPACE RA for a specific domain may
require additional specializations of Artifact Representation
concepts such as in the case of software architecting
TSPACE, viewpoints and architecture views can be
specializations of Artifact Representation. The proposed
ontology-model provides flexibility to incorporate additional
concepts by supporting dynamic composition and
aggregation of different concepts in a TSPACE instance.

Fig. 1. TSPACE Ontology-Model

TSPACE Ontology element has four specializations as
represented by ontology-model that is shown in Figure 1 and
captures its elements and relations among the elements. The
ontology-model consists of two main ontologies: Capability

Preprint Copy Distributed by Authors

Ontology and Artifact Ontology. Annotation Ontology and
Change Ontology complement the Artifact Ontology. The
ontologies provide the basis for formalizing the tools
selection process, establish the relationship among the
artifacts that are produced or consumed in a TSPACE
instance, and capture the activities (operations) that are
performed on artifacts. Different components of the RA (to
be discussed in Section V) use one or more of the TSPACE
ontologies. Capability Ontology captures features that are
supported by the tools registered with the TSPACE and
users’ tools needs in a TSPACE instance. Artifact Ontology
captures the relationship among the artifacts in a TSPACE
instance. Annotation Ontology provides support to annotate
the artifacts that are produced or consumed by the tools
constituting a TSPACE and provides foundation to manually
define or automatically recover trace links between artifacts
based on the annotation rules. Change Ontology keeps track
of the old and new versions of the artifacts in a TSPACE and
raises awareness among users with notification according to
Notification Rules. The ontologies are populated as different
activities are performed using the tools in a TSPACE
instance and are maintained in Resource Description
Framework (RDF)3 data structure. Figure 1 shows abstract
TSPACE ontologies and their relations with each other.
Benefits: Our decision to use ontologies at the core of the
RA appropriately formalizes the concepts about a TSPACE.
It also makes the RA flexible and dynamic enough to
accommodate different types of the tools.
Challenges: Building ontologies for complex domains is a
non-trivial undertaking. The process of building such
ontologies requires expertise in domain knowledge for
defining the high-level concepts and relationships between
different artifacts of a TSPACE. The ontology-model
presented in Figure 1 shows the high-level relationships
between different concepts and artifacts of a Software
Architecting TSPACE, which can be tailored and extended
for other domains.

B. Using SOA for TSPACE Façade
For designing the façade of the RA, we used Service

Oriented Architecture (SOA) [5] and REST architecture
styles [13]. The tools associated with a TSPACE interact
with the RA via its façade.
Benefits: The use of SOA and REST makes it easy to
modify the RA’s components and supports seamless
integration of heterogeneous tools to be provisioned.
Challenges: For certain tools, it may not be possible to write
plug-in or probes to have direct interaction with a platform
using SOA or REST interfaces. In such cases, intermediate
glue code components may be required.

C. Use of Centralized Repository Pattern to Share Abstract
Ontology Templates
We have used shared repository pattern [14] to provide a

common Global Ontology Knowledgebase for TSPACE
instances for multiple domains. A centralized ontology
repository hosts standard abstract Artifacts Ontology,
Annotation Ontology, Change Ontology and Capability
Ontology for different domains.

3 http://www.w3.org/RDF/

Benefits: A centralized global ontology repository provides
a single point of access to different ontologies of a TSPACE.
It also positively addresses the flexibility characteristic
(QR4) of the TSPACE RA.
Challenges: A centralized repository pattern can become a
performance bottleneck if there are multiple instances of a
TaaS accessing the repository. This risk can be mitigated by
having replication of the repository and a load balancer.

D. Use of Pipes and Filter Pattern
There can be a number of tools in a specific instance of

TSPACE and the RA needs to support multiple TSPACE
instances. The architectural support is needed to handle an
increasing amount of data generated by multiple tools
associated with each instance of a TSPACE. That is why we
have used two-staged pipes and filters pattern [14] in the RA
to meet the performance requirements of the platform.
Benefits: The adoption of the two-staged pipes and filter
architecture style provides a queuing mechanism to provide
support for scalability and multi-tenancy. Pipeline based
approach provides support to handle large volume of input
data in processing queues. In the first stage, there is a
common queue pipeline at which data from all the tools
belonging to different instances of a TaaS are received. In
the second stage, there are multiple queue pipelines
corresponding to an instance of a TSPACE. The input data
are sent to the queue of the corresponding tenant with the
help of a monitoring filter.
Challenges: If the input data streams scale rapidly, having
only one monitoring filter may become a performance
bottleneck. Multiple monitoring components can be attached
to the first queue pipeline to address the scalability issue.

E. Loosely Coupled Layers
The layered architecture style [14] is widely used to

provide loose coupling and separation of concerns in a
system. We used the layered architecture at multiple levels of
abstraction in the TSPACE RA.
Benefits: The layered architecture style makes it easy to
implement and evolve different components of the RA
independent of each other, and plug in third party tools.
Challenges: The layered architecture style requires explicit
interfaces for components in each layer via which other
layers can utilize its functionality. This may result in more
effort while materializing the RA. Layered architecture can
also have negative impact on performance. However,
potential negative effects of the layered approach can be
mitigated by incorporating performance improvement
techniques for data retrieval such as data caching.

F. Tenant Specific Semantic Integration, Information
Discovery and Awareness
Multi-tenancy is an important characteristic of *aaS

model [10]. The proposed RA fulfills the multi-tenancy
characteristic to provide proper isolation of tools and data of
one tenant of a TSPACE instance from other tenants (QR2).
The isolation between the architectural elements has been
provided at two different levels of abstractions: i) between
the ontology instances and corresponding RDF data stores
(persistence) of each TSPACE instance of a specific tenant
by having logical isolation among the components and ii)

Preprint Copy Distributed by Authors

between the tools provisioned in a TSPACE instance using
virtual machine (VMs) of underlying IaaS cloud.
Benefits: Logical isolation between TSPACE elements that
maintain tenant specific information allows customization of
TSPACE with respect to specific needs of each tenant.
Challenges: Some domains with stringent multi-tenancy
requirements may need adoption for more formal
approaches. The WSO2 carbon platform [8] can be used to
provide isolation between components of a TSPACE
instance. The information flow authentication model based
on security policy and role based authorization mechanism
can be incorporated to implement security in multi-tenant
access points [15]. The multi-tenant access and indexing
techniques [8] can be used for multi-tenant persistence of
ontologies and corresponding RDF data stores.

V. TSPACE RA DESIGN, IMPLEMENTATION AND
OVERVIEW OF PROVISIONED TOOLS

We present the TSPACE RA at three levels of
abstractions. First we describe the top-level modules; then
we decompose those modules into components and sub-
components. There are some components that provide
abstraction of the external systems (e.g., provisioning
components) whereas other components are described in
detail as part of the RA. The legend presented in Figure 2
shows the notations that are used in the diagrams of the RA.

A. First Level Decomposition
According to the functional requirements, three lifecycle

phases of tools (enactment and provisioning, semantic
integration and awareness of activities) constituting
TSPACE are supported by the TSPACE RA. Figure 2
provides an overall representation of the RA (development
view). The modules at first level of decomposition are
organized following the layered architecture style [9]. The
TSPACE RA conceptually consists of three modules: i)
Tools Selection and Provisioning Manager, ii) Semantic
Integration Manager, and iii) Awareness and Information
Discovery Manager.

The Tools Selection and Provisioning Manager enables
users to select the tools that are suitable for the activities to
be performed and provision the tools using preconfigured
Amazon EC24 VMs. TSPACE is implemented using JavaEE,
SOAP and REST services technologies (JAX-RS5, JAX-
WS6). The Semantic Integration Manager supports semantic
integration among artifacts that are maintained by the
provisioned tools. The Collaboration, Awareness and
Information Discovery Manager helps extract the
information that can be used to notify users about different
events that are triggered in a TSPACE. The events are
triggered according to the rules defined in an instance of
TSPACE with respect to corresponding domain in which the
RA is used. At the core of the RA, there is an ontology-based
semantic integration model (Section IV.A). Each module is
further divided into multiple components and sub-
components. Each component provides methods that can be

4 http://aws.amazon.com/ec2/
5 http://jax-rs-spec.java.net/
6 https://jax-ws.java.net/

invoked by components in other modules. We have used
façade pattern [14] to support integration among components
and modifiability. The decomposition at the first level fulfills
the functional requirements discussed in Section III.

Fig. 2. Overall Architecture of the TSPACE – Development View

B. Second and Third Level Decomposition
The decomposition of the Tools Selection and

Provisioning Manager is based on requirements FR1 and
QR1. FR1 deals with enactment of TSPACE based on the
tools’ needs for the activities of a specific project and with
respect to the location and resource constraints. QR1 deals
with automation of the provisioning process. Decomposition
of the Semantic Integration Manager is based on providing
support for semantic integration among heterogeneous
artifacts (FR2) and interoperability (QR5). Decomposition of
the Awareness and Information Discovery Manager is
designed to provide awareness to users about different
actions that are performed on the artifacts using different
tools constituting a TSPACE (FR3). We have also
considered the interaction among different components to
describe the behavioral model of the RA and have described
it in terms of information exchange among the components.

1) Tools Selection and Provisioning Manager: The
components constituting this module provide support for
tools selection and provisioning. The high-level views of the
provisioning architectures synthesized in [8] inspire the RA
and have been extended for TSPACE by incorporating the
tools selection ontology (Section IV.A) that formalizes
tools’ capability and users’ requirements for tools.

Figure 3 shows decomposition of Tools Selection and
Provisioning Manager. The Graphical User Interfaces
(GUIs) provides an interface that supports users interaction
and allows administrators to register tools with an instance of
the RA, allows stakeholders to specify their tools’
requirements and supports administration activities. The
Tools Repository Manager component maintains a repository

Preprint Copy Distributed by Authors

of tools that are registered with the system, the Capability
Ontology model of each tool and the VMs that are to be used
to host the tools. Tool Selector transforms a user’s tools’
requirements into a relevant ontology and compares it with
the Capability Ontology of all the tools registered by the
Tools Repository Manager by looking if the capabilities (e.g.
features) required by the users are supported by the
registered tools. Tools Enactment Preference Manager takes
care of the constraints associated with the enactment of the
tools. For example, location constraints require that all the
tools for a specific instance of TSPACE shall be provisioned
from a public or private IaaS clouds hosted in European
Union territory. Cloud Enactment Engine enacts tools on an
underlying IaaS cloud using IaaS Cloud Management APIs.
In prototype of TSPACE, we are using Amazon EC2 IaaS
cloud to host and provision individual tools using Amazon
EC2 APIs7. If a private or hybrid IaaS is to be deployed, then
a cloud management framework such as IBM Altocumulus
Framework [8] can be used.

Fig. 3. Tools Selection and Provisioning – Logical View

2) Semantic Integration Manager: The components that
are included in this module support semantic integration
among the artifacts produced or consumed by the tools that
constitute a TSPACE (FR2). There is an ontology based
semantic integration model at the core of this module as
described in section IV.A. We have implemented the
ontology mechanisms using Apache Jena Framework8.

Figure 4 shows the Semantic Integration Manager’s
decomposition. Plug-ins (and GUIs) that are installed on the
provisioned tools, link the tools with TSPACE APIs and
provide Semantic Integration Manager a point of access to
the tools. The RA supports the implementation of multiple
instances of the TSPACE. The data sent from Plug-ins or
GUIs are received at a Tenant Independent Data Collection
Queue. A Data Monitor component monitors all received
data elements and filters for forwarding to a Tenant Specific
Data Collection Queue. There is at least one dedicated data
collection (DC) queue for each tenant. If input data streams
exceed beyond the acceptable threshold, data collection
queues are replicated along with Data Monitor component.
The monitoring and filtering rules are used by Data Monitor

7 http://aws.amazon.com/sdk-for-java/
8 https://jena.apache.org/

to identify tenants from the incoming data stream according
to tenant identification specifications.

We have designed a dedicated Transformation Module
for each instance of the TSPACE. This module handles the
data sent by Tenant Specific Data Collection Queues. The
Transformation Module is further subdivided into multiple
components. There are two types of ontology knowledge
base in the RA: the Global Ontology Knowledgebase
maintains the tool’s Capability Ontology and Artifact
Ontology templates that establishes the relationships among
all the possible concepts (the artifacts and their types) that
can exist in a specific domain. The Local Ontology
Knowledgebase maintains the relation between the concepts
for a specific instance of a TSPACE corresponding to the
tools included in the instance. Annotation Ontology and
Change Ontology only provide annotation templates and
change monitoring rules, and these do not need to have
tenant specific instantiations. Ontology Builder and RDF
Generator populates the root Artifacts Ontology based on
the data inputs from Tenant Specific Data Collection Queue.
In TSPACE prototype, Ontology Builder maintains the
ontology in a proprietary tree like data structure in first stage,
which is then transformed into RDF using Apache Jena
Framework.

Fig. 4. Semantic Integration – Logical View

3) Notification and Information Discovery Managers:
This module provides support to raise awareness about
users’ activities (FR3) and provides support to trace the
changes and the sources of the changes to the artifacts
during the lifecycle of a TSPACE. These components
leverage the RDF data store that is populated by Semantic
Integration Manager and use information discovery rules
for different types of change and trace notifications.

 Figure 4 shows interaction of Notification Manager and
Information Discovery Manager components with Semantic
Integration Manager. RDF Data Store is the core of these
components. The Annotation Manager acts as a data input
source for Information Discovery Manager and Notification

Preprint Copy Distributed by Authors

Manager. Information Discovery Manager uses predefined
information discovery rules that are stored in the information
discovery data store. In the prototype implementation of the
RA, we are using SPARQL9 queries for information
extraction from RDF data stores. SPARQL provides a
configurable and dynamic mechanism to query RDF data
structures. Notification Manager generates the change and
trace notification for the users using the tools according to
the notification rules. The notification rules primarily guide
for what information needs to be sent to users for trace and
change notification, whether the users have subscribed for
pull or push notification and what is the criteria and
frequency for push notifications.

C. A Case Study
As a case study for proof of concept of the prototype

implementation of TSPACE RA, we have integrated PakMe
[16], a customized version of the decision support tool
ArchDesigner and a modeling tool Microsoft Visio with the
platform and provisioned them using Amazon EC2 Virtual
Machine templates. PakMe and ArchDesigners are Web-
based tools. We have modified their GUIs to integrate those
with the platform. Visio is a desktop-based tool that provides
support for add-ins. We have implemented an add-in for
Visio to integrate it with prototype implementation of the RA
for SA TSPACE. A combination of tools that are
maintaining the artifacts in their proprietary data structures
within the tools (PakMe and ArchDesigner) and as a
standalone standardized artifacts (Visio) is selected to
demonstrate applicability of TSPACE semantic integration
with tools of heterogeneous nature. The screenshot of the
PakMe GUI and Visio add-in is shown in Figure 5.

Fig. 5. Prototype GUI and Add-in

9 http://www.w3.org/TR/sparql11-query/

VI. EVALUATION
Software architecture community has developed several

methods for architecture evaluation such as Architecture
Tradeoff Analysis Method (ATAM) and Software
Architecture Analysis Method (SAAM) [17]. We have
evaluated the completeness of the proposed RA for
functional requirements (FR1, FR2 and FR3) and have used
scenarios based evaluation for non-functional requirements
(QR1, QR2, QR3, QR4, QR5 and QR6). Because of space
limitation, we do not provide the complete details of the
architecture evaluation using a scenario based method; rather
we report the key reasoning points and outcomes of the
evaluation decisions. Table III shows the mapping between
the lifecycle phases, functional requirements and
corresponding components from the high-level and
decomposed architectural representations. It is clear that
different parts of the RA provide support for all the phases
and corresponding requirements (Req. ID).

TABLE III. REQUIREMENTS AND COMPONENTS MAPPING

Life Cycle
Phase

Req. ID RA Components

Tools
Registration

FR1 Capability Ontology and Tools Repository
Manager

Tools Selection FR1 Capability Ontology and Tools Selector
Enactment and
Provisioning

FR1 Capability Ontology, Tools Enactment
Preference Manager, Tools Enactment
Engine and IaaS Cloud Management APIs

Semantic
Integration and
Interoperability

FR2,
QR5

Artifact Ontology, Tenant Independent
and Tenant Dependent Data Collection
Queues, Data Monitor, RDF Data Store,
Ontology Builder and RDF Generator,
Annotation Manager, Global Ontology
Knowledgebase and Local Ontology
Knowledgebase

Awareness on
the Activities

FR3 Annotation Ontology, Change Ontology,
Information Discovery Manager and
Notification Manager

We have presented the RA in terms of its goals that are
transformed into functional and non-functional requirements,
the TSPACE ontology-model, different modules and
components of the RA at three levels of abstraction, and
have explained interaction among the components of the RA.
It covers all the important dimensions for reporting an RA as
per [6] and the views of Rational Unified Process [7]. It also
positively addresses the completeness of the RA (QR6). Our
decision of using a layered approach supports separation of
concerns among the components and high degree of
modifiability. The Global Ontology Knowledgebase
provides an abstract representation of the TSPACE
ontologies and it is materialized using abstract data
repository architecture style. It does not only achieve
indirection in ontologies but also positively addresses
flexibility and Integration (FR2). Façade pattern is used at
the interface layer to provide interoperability (QR5) between
the tools and the TSPACE RA. A pipes and filter pattern is
used to support scalability for handling ontology
construction for multiple instances of a TSPACE and to
support multi-tenancy (QR2) in the ontology-based semantic
integration. The adoption of ontology-based approach for
tools selection, provisioning, integration, collaboration and
awareness enables the RA applicability (QR6) for supporting

Preprint Copy Distributed by Authors

heterogeneous tools and activities in a TSPACE instance.
Applicability of the reference architecture is further
evaluated by implementing its prototype.

VII. RELATED WORK
Some efforts have been made to report the architecture of

cloud-based tools but none of them provides a coherent
solution covering all the required dimensions. Calvo et al.
propose an architecture for textual information retrieval from
cloud-based collaborative writing tools [18] but their effort is
only limited to support automated feedback and process
analysis of students’ academic assignment write-ups.
Oliveira and Nakagawa propose a Service-Oriented
Architecture for software testing tools [19]. Their work
provides the detail on architectural requirements and a
layered model to map tools onto the business process but
does not cover a complete lifecycle of tools provisioning and
operations. Integration approaches using service and
graphical user end points have been reported in [20, 21]. An
extensible architecture description language (xADL) to
support integration among architecture centric tools is
presented in [22]. Zhao et al. provide a survey of ontologies
that have been proposed for software engineering [23]. We
have proposed specialized ontologies for the TSPACE RA
because the reported software engineering ontologies do not
satisfy the specific needs of the RA. In comparison to the
discussed existing work in the area, the TSPACE RA has
been designed not only to support on demand tools
provisioning but also to enable bundling of tools based on
stakeholders’ needs and to provide a mechanism to raise
awareness about the stakeholders’ activities using the
bundled suite of tools. The TSPACE RA also supports
semantic integration (using TSPACE ontologies) among
artifacts consumed or produced during different activities
that are performed using different tools that are likely to have
proprietary data structures and process models.

VIII. CONCLUSIONS
We have presented and discussed the key motivators that

have stimulated the requirements for the Tools as a Service
Space (TSPACE) Reference Architecture (RA), an ontology-
based semantic integration approach that provides the
backbone of the proposed RA and different views of the RA
at multiple levels of abstractions. The presented RA
introduces a standardized view of a TSPACE and has the
potential of providing a number of benefits to practitioners
and researchers. The RA can provide an increased
understanding of the TSPACE for software architecting
domain in particular and other engineering domains in
general. The main aim of the RA is to facilitate the design of
concrete TSPACE systems in various domains. The
practitioners can use the RA to communicate a TSPACE
instance’s requirements and the main architectural principles
among software engineering teams. The researchers can use
the RA for the identification of potential research areas.
Investigation of the application of the existing traceability
and information retrieval mechanisms in the context of the
TSPACE to provide automated traceability and semantic
integration among different types of artifacts is one direction
for future research. We also intend to extend the RA

ontology-model for other domains and analyze the RA
components for the extended model. In the proposed RA, we
have discussed security implicitly as part of the multi-
tenancy. In the future, we tend to enhance the RA by
considering security as an explicit non-functional
requirement.

REFERENCES
[1] P. Louridas, "Up in the Air: Moving Your Applications to the Cloud,"

Software, IEEE, vol. 27, pp. 6-11, 2010.
[2] P. Yara et al.," in Software Engineering Approaches for Offshore and

Outsourced Development. vol. 35, Springer, 2009, pp. 81-95.
[3] M. A. Chauhan and M. A. Babar, "Cloud infrastructure for providing

tools as a service: quality attributes and potential solutions,"
WICSA/ECSA Companion Volume, Helsinki, Finland, 2012.

[4] M. A. Chauhan and M. A. Babar, "Towards a Reference Architecture
to Provision Tools as a Service for Global Software Development,"
WICSA, 2014, pp. 167-170.

[5] M. N. Huhns and M. P. Singh, "Service-oriented computing: Key
concepts and principles," Internet Computing, IEEE, vol. 9, pp. 75-
81, 2005.

[6] S. Angelov, P. Grefen, and D. Greefhorst, "A framework for analysis
and design of software reference architectures," Information and
Software Technology, vol. 54, pp. 417-431, 2012.

[7] P. Kruchten, The rational unified process: an introduction: Addison-
Wesley Professional, 2004.

[8] M. A. Chauhan and M. A. Babar, "A Systematic Mapping Study of
Software Architectures for Cloud Based Systems," Technical Report
TR-2014-175, IT University, Copenhagen, 2014.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice: Addison-Wesley Professional, 2012.

[10] C. P. Bezemer et al., "Enabling multi-tenancy: An industrial
experience report," in Software Maintenance (ICSM), 2010 IEEE
International Conference on, 2010, pp. 1-8.

[11] "ISO/IEC/IEEE Systems and software engineering -- Architecture
description," ISO/IEC/IEEE 42010:2011(E), pp. 1-46, 2011.

[12] F. Arvidsson and A. Flycht-Eriksson, "“Ontology I”. Retrieved 23
June 2014."

[13] R. T. Fielding, "Architectural styles and the design of network-based
software architectures," University of California, Irvine, 2000.

[14] F. Buschmann et al., Pattern-oriented software architecture: a system
of patterns: John Wiley & Sons, Inc., 1996.

[15] J. Bernal Bernabe et al., "Semantic-aware multi-tenancy authorization
system for cloud architectures," Future Generation Computer
Systems, vol. 32, pp. 154-167, 2014.

[16] M. A. Babar and I. Gorton, "A Tool for Managing Software
Architecture Knowledge," SHARK, 2007.

[17] M. A. Babar, L. Zhu, and R. Jeffery, "A framework for classifying
and comparing software architecture evaluation methods," ASWEC,
2004, pp. 309-318.

[18] R. A. Calvo et al., "Collaborative Writing Support Tools on the
Cloud," Learning Technologies, IEEE Transactions on, vol. 4, pp. 88-
97, 2011.

[19] L. B. R. Oliveira and E. Y. Nakagawa, "A service-oriented reference
architecture for software testing tools," in Software Architecture, ed:
Springer, 2011, pp. 405-421.

[20] R. Wolvers and T. Seceleanu, "Embedded Systems Design Flows:
Integrating Requirements Authoring and Design Tools," in Software
Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, 2013, pp. 244-251.

[21] M. Biehl, J. De Sosa, M. Torngren, and O. Diaz, "Efficient
Construction of Presentation Integration for Web-Based and Desktop
Development Tools," COMPSACW, 2013, pp. 697-702.

[22] R. Khare et al., "xADL: enabling architecture-centric tool integration
with XML," Hawaii International Conference, 2001, p. 9 pp.

[23] Y. Zhao, J. Dong, and T. Peng, "Ontology Classification for
Semantic-Web-Based Software Engineering," Services Computing,
IEEE Transactions on, vol. 2, pp. 303-317, 2009.

