Cloud Infrastructure for Providing Tools as a Service: Architectural Requirements and Potential Solutions

M. Ali Babar

IT University of Copenhagen, Denmark

Keynote Talk @ CLOUDMDE, Copenahgen, Denmark July 02, 2012

Overview

- Global Software Engineering (GSE)
- Scenarios of tool support challenges

- Leveraging Cloud Computing for GSE
- Requirements & potential solutions
- MDE & Cloud Computing
- Concluding remarks

Background Brief

M. Ali Babar

Associate Professor @ ITU PhD in CSE, University of New South Wales Work History:

ITU, CPH: Dec. 2009 ...

Lero, Ireland: 2007 - 2009

NICTA, Australia: 2003 - 2007

JRCASE, Macquarie University: 2001 – 2003

Various industrial roles in IT: Prior to 2001

Research in software architecture,

Service Orientation, Cloud Computing, and Software Development Paradigm

http://malibabar.wordpress.com

Cloud Computing Research Threads

Many Meanings & Forms of GSE

Types of GSE Arrangements

Source: Gallivan and Oh, 1999

Inter- & Intra-Organizational SE Processes

Scenarios of tool support challenges

Tools for Distributed Architecting Process

Tools for Knowledge Ecosystems

Tool Support for GSE

Integration

provided at the application level (C/S)

Tools Supporting 3C Model

Technological Classification

Process-Centric Classification

Leveraging Cloud Computing for GSE

Why Cloud Computing Matters for GSE?

- Testing as a Service (TaaS)
 - Stress testing with cloud-based infrastructure
 - Enabling testing of application for sensitive data by offshore testers
- Collaborative environments in Clouds
 - Just-in-Time (JIT) tool composition
 - Processes, tools, & context aligned

Source: http://aws.amazon.com/solutions/casestudies/8kmiles/

NexGen Infrastructure for GSE

Context

Providing supportive technologies to GSE teams

Challenges

- Dozens of different tools required
- Some commercial tools (IBM SameTime and MS Communicator) available but across vendor integration is problematic and the tools are expensive
- No Just In Time (JIT) composition and use of services
- Misalignment between tools, processes, and culture

Proposed solution

Cloud-Based Infrastructure for supporting GSE through Tool as a Service (TaaS)

Advantages of TaaS for GSE

- On demand tools acquisition & access to a wide range of tools
- Processes and tools alignment – acquiring tools for process requirements of each project

Advantages of TaaS for GSE

- Artifacts' traceability across multiple sites
- Implicit support for real -time awareness and collaboration

Advantages of TaaS for GSE

- Access to sensitive and massive amount of data without data movement
- Easy access to expensive and sensitive technologies

Requirements & Potential Solutions!!!

Requirements & Solutions

- Support for multiple organizations & teams
 - Multi-tenancy for providing isolation between multiple services
 - Privacy and security handling services
- Tools versioning and bundling
 - Version management for maintaining partitioning between different versions of tools & combining them as a tool suite
- Integration with commercially available tools
 - Platform neutral APIs and compatible data structure
- Tools working with private data and artefacts
 - Workflow like distributable data processing services

Requirements & Solutions

- Support for multiple types of persistence methods
 - Design & exploit a multi-tenant database driver
- Accessibility from multiple types of devices
 - Dynamic distribution of processing load on devices & clouds
 - Provide hooks for implementing or interacting with services for defining & selecting optimal configuration strategy for tools
 - Transform responses to formats recognizable by client devices
- Compliance with Service Level Agreement (SLA) QoS
 - Specify machine readable & dynamically changeable SLAs
 - Continuous monitoring & dynamic execution of services according to SLA specification (e.g., scalability rules & elasticity algorithms)

Supporting Multi-Tenancy

- Handling & serving requests from a single server
- Parsing & validating requests for services
- Access control & authentication rules
- Services management
- Multi-tenant DB driver & Indexes

Supporting Multiple Types of Devices

- Platform neutral interfaces
- Context monitoring & configuration
- Resource optimization
- Self managed clients components
- Response composition

A Reference Architecture

MDE & Cloud Computing

Migrating Tools to Cloud Computing

- Methods, Processes, and Tools are required
- Supporting migration by providing process framework and guidelines
- A case of migrating a software metrics system -Hackystat
 - Supporting large number of organizations for process and product metrics in GSE

- Requires elastic computing and storage resources
- SaaS on IaaS (Amazon) or SaaS on PaaS (Goolge)

Architectural View of HackyStat

Quality Attributes & Architectural Decisions

Quality	Architectural Decisions	
Attributes	Amazon EC2 & S3	Google App Engine
Scalability	Replication of system services to meet performance requirments.	No action required. Scalability is handled by platform.
	Separation of database layer into a new service that utilizes platform specific persistency features.	Refactoring of persistency components to make it compatible with Google Datastore persistence.
Portability	A wrapper layer is added to ensure platform independence. A separate database layer to provide seamless transfer of database layer.	Portability to other platforms is not possible.
Compatibility	System features are exposed through origonal REST API. A wrapper layer is added to provide abstraction to services cluster and their deployment configuration.	System features are exposed through origonal REST API.
Reliability & Autonomous Scalability	Façade/Waper layer to provide abstraction. Amazon's Elastic Load Balancer ensures autonomous scalability.	Ensured by platform.
Efficient & effective deployments	Amazon Elastic Load Balancer ensures auto scaling as well as efficient and cost effective deployment configuration.	Deployment of application components on cloud is managed by platform.

Architectural Views of Hackystat in Cloud

Key Observations for Research

- Heavy reliance on cloud infrastructure
 - SaaS on PaaS or laaS are tightly coupled with the APIs provided by a service provider
 - Huge efforts required for porting applications
- Vendor dependent technology enhancements
 - Make it difficult to deploy and evolve a complex system in public clouds
- Lack of tooling support
 - Existing tools only cover software specific details and do not consider the underlying virtual environment

Key Observations for Research

Evaluation of quality attributes

- Supporting implementation level investigation of static quality attributes e.g., complexity
- Modeling & testing unknown users and infrastructures for scalability, accountability.....
- Modeling & reasoning fine-grained control over privacy and security

Testing

Change in the infrastructure of PaaS/SaaS
 platforms necessitate continuous testing

Concluding Remarks!!!

- Cloud Computing matters We need to quickly learn how to exploit the promised benefits and address the challenges.
- Cloud computing stimulates new research directions for new and novel ways of developing software & services.
- Tools as a Service (TaaS) has huge potential for SE in general and GSE in particular.
- MDE can play a significant role in migrating legacy to or building new tools for cloud-based infrastructures.

Acknowledgements

- Several colleagues and PhD students have hugely contributed to the work on GSE
- TaaS work is being performed with Aufeef Chauhan through his PhD research
- Tools review work has been performed with Paolo Tell for his PhD research

Thank You!

Questions

M. Ali Babar

alibabar.m@gmail.com malibabar.wordpress.com

