
Security Support in Continuous Deployment Pipeline

Faheem Ullah1, Adam Johannes Raft2, Mojtaba Shahin1, Mansooreh Zahedi2 and Muhammad Ali
Babar1,2

1CREST – Centre for Research on Engineering Software Technologies, The University of Adelaide, Adelaide, Australia
2CREST – Centre for Research on Engineering Software Technologies, IT University of Copenhagen, Copenhagen, Denmark

{faheem.ullah, mojtaba.shahin, ali.babar}@adelaide.edu.au, {adamraft, mzah}@itu.dk

Keywords: Continuous Deployment Pipeline, Continuous Deployment, Security, Continuous Integration.

Abstract: Continuous Deployment (CD) has emerged as a new practice in the software industry to continuously and
automatically deploy software changes into production. Continuous Deployment Pipeline (CDP) supports CD
practice by transferring the changes from the repository to production. Since most of the CDP components run
in an environment that has several interfaces to the Internet, these components are vulnerable to various kinds
of malicious attacks. This paper reports our work aimed at designing secure CDP by utilizing security tactics.
We have demonstrated the effectiveness of five security tactics in designing a secure pipeline by conducting an
experiment on two CDPs– one incorporates security tactics while the other does not. Both CDPs have been
analysed qualitatively and quantitatively. We used assurance cases with goal-structured notations for
qualitative analysis. For quantitative analysis, we used penetration tools. Our findings indicate that the applied
tactics improve the security of the major components (i.e., repository, continuous integration server, main
server) of a CDP by controlling access to the components and establishing secure connections.

1 INTRODUCTION

Continuous Deployment (CD) is a software
development practice which enables an organization
to deploy software to customers continuously,
automatically and reliably (Claps et al., 2015,
ElectricCloud, 2016). A number of innovative
organizations such as Facebook, Microsoft, and IBM
adopted CD to deliver values to their customers
frequently. CD brings several benefits to an
organization (Anderson, 2014). These benefits
include reducing developer’s effort, improving the
quality of software, and reduced cost (Anderson et
al., 2014, Chen, 2015). Continuous Deployment
Pipeline (CDP) is the core concept to successfully
implement CD practice (contributors, 2016, Humble
and Farley, 2010, Phillips A, 2015). CDP
automatically transfers code changes from a
repository to a production environment.
Furthermore, CDP enables the team members to
always keep an eye on every aspect (e.g., build,
deploy, test etc.) of the system, and get a quick
feedback on deployed software. A CDP also
promotes collaboration between various groups of
developers working together to fix bugs and issues
and deliver the software by improving the visibility

of changes (Fowler, 2013). A CDP is a collection of
stages (e.g., build, package, and test) supported by
tools (GitHub, Jenkins, AWS etc.) and technologies
for enabling continuous and automated deployment
of changes into production. The number and nature
of stages involved in CDP vary from organization to
organization (Adams and McIntosh, 2016).
Similarly, the tools and technologies incorporated
for implementation of CDP also vary from project to
project and organization to organization.

Security of software supply chain is
becoming important because of the involvement of
several direct and indirect participants in the process
(Ellison et al., 2010). In order to ensure a secure
supply of software, each phase (initiation,
development, deployment, maintenance and
disposal) of software supply chain needs to be
protected from malicious attacks. Being the last
portion of the supply chain, deployment pipeline
needs to be fully secure (Bass et al., 2015).
However, the reality is contrary to this. Different
users from various teams (e.g., development,
operation, and testing) have the same level of access
to various resources on the pipeline which gives
unnecessary access and paws way for malicious
activities (Rimba et al., 2015). Continuous

Integration (CI) server, an important part of a CDP,
generally has a monolithic design which enables an
attacker (who breached a single part of the code) to
have access to all parts of the code and so gain an
overall control of the entire process (Bass et al.,
2015). Securing a CDP is a challenging task due to
the variety of tools involved with each having its
own security requirements (Bass et al., 2015).

It is asserted that if the components of a
CDP and the communication among them are
secure, then the whole CDP will be secure (Bass et
al., 2015, Rimba et al., 2015). Hence, we propose
the use of five security tactics for protecting CDP
from malicious attacks by addressing the security
requirements of the three major components (i.e.,
repository, main server, and CI server) of the CDP.
The primary focus of our security tactics is to ensure
controlled access to these components. We
demonstrate the effectiveness of our security tactics
by comparing two CDPs – one that incorporates our
proposed tactics and other that does not. Our results
show that security tactics ultimately lead to
enhancing the security of the entire CDP. It is worth
mentioning that both academia and industry refer to
CDP and CI server also as continuous delivery
pipeline and automated build server respectively.
Therefore, these terms are used interchangeably in
the rest of the paper.

The rest of the paper is organized as follows:
Section 2 discusses CDP, its security in the light of
existing literature, and motivation for this work.
Section 3 includes an overview of our implemented
CDPs, security risks identified for each of the three
components, and presents our approach for
eliminating identified risks through the incorporation
of our proposed security tactics. Section 4 presents
analysis and results from the qualitative and
quantitative evaluation of the effectiveness of
security tactics. Section 5 provides a discussion on
the results and limitations of our approach. Section 6
concludes the work and identifies some future
research directions.

2 RELATED WORK

Sufficient research exists on the identification and
categorization of software security risks. Reviewing
such literature gives us an idea of possible
permutations inside a software system. (Landwehr et
al., 1993) classify security flaws based on how,
when and where they are introduced into the system.
Based on this logic, security flaws are categorized
into three categories: Genesis (intentionally,

unintentionally etc.), Time of Introduction (during
development, maintenance, or operation etc.) and
Location (hardware or software). ((Langweg, 2004)
categorize attacks that software applications can
come across. According to this classification, attacks
are divided into three categories: Location (input),
Cause (processing), and Effect (output). (Aslam et
al., 1996) present the classification of security faults
in Unix Operating System to highlight various types
of security faults. Similarly, several organizations
also highlight security risks in software. Open Web
Application Security Project (OWASP)1 created a
list of top 10 vulnerabilities (e.g. injection, broken
authentication & session management, and missing
function-level access control etc.) for web
applications. In 2011, Common Weaknesses
Enumeration (CWE)2 also published a list of 25
software errors (missing authentication, missing
authorization, incorrect authorization etc.) that can
lead to serious losses.
 (Bass et al., 2015) explore various
scenarios of subverting a pipeline that includes
deployment of an invalid image, deployment of an
image without being passed through a complete
pipeline, and unauthorized environment (e.g.
development) having direct access to the production
environment. Authors propose steps for securing the
pipeline that includes: (1) identification of security
requirements of the pipeline; (2) differentiating
between trustworthy and untrustworthy components
of the pipeline; (3) decomposition of untrustworthy
components of the pipeline; (4) modification of
untrustworthy components to let the trustworthy
components perform critical operations. The
proposed process for securing the deployment
pipeline is aimed at making trustworthy components
of the pipeline mediate access to the actual building
and deploying activities. Accessing sensitive data or
functions only through trustworthy components
improves the security of the pipeline by preventing
untrustworthy components from accessing sensitive
functions. The devised process does not fully secure
the pipeline but hardens it to a certain level.
 (Rimba et al., 2015) highlight several
security requirements of CDP that include: (1)
different roles (e.g. development team, operation
team etc.) should have different levels of access (2)
in order to prevent malicious code end up being
deployed in production, CDP should not be miss-
configured or compromised in any way and (3)
testing and production environments should be fully
isolated. Authors demonstrate the suitability of their

1https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proj

ect#tab=OWASP_Top_10_for_2013
2 http://cwe.mitre.org/top25/

proposed approach (Design Fragments) by securing
a CDP to satisfy its security requirements. In order
to address first security requirement, authors utilize
existing security mechanisms of Amazon Web
Service (AWS) and CI server (Jenkins) to assign
different access levels to different users. For second
security requirement, AWS buckets (codeBucket,
credsBucket, imageBucket, and configBucket) have
been protected by allowing only Jenkins to have
access to them. Authentication enforcer design
fragment has been inserted between Jenkins and
buckets, and devised tactics are leveraged to make
required connections or disconnections for
separating Jenkins from trusted components. Using
execution domain pattern, authors define three
logical execution domains (testing, production, and
shared) for isolation of testing and production
environments. Assurance Case Analysis has been
performed to verify that devised tactics fully address
second and third security requirement of the CDP.
 (Gruhn et al., 2013) analyse CI from the
security perspective to identify possible security
threats. This study relates to our work as it also
identifies a class of threats related to build server.
Build Server executes a build job in four steps: (1)
Version Control System (VCS) checkout (2) Build
preparations (3) Builder runs (4) Notification. Each
step is vulnerable to various kinds of malicious
attacks such as exploiting symbolic links (Ko et al.,
1994), Denial of Service attack, Thompson’s
trusting trust attack (Thompson, 1984). These threats
are eliminated by encapsulating build job through
virtualization. The CI system restores build server to
its original clean form after every build process and
thereby, protects build server from malicious
attacks.

This related work section gives us an insight
into CDP security risks through investigation of
security taxonomies, findings of various security
organizations and related research works. From
these findings, it can be extracted that CDP is
subjected to a vast majority of security threats. In
existing literature, some studies (Bass et al., 2015,
Rimba et al., 2015) focus on access control while
some (Gruhn et al., 2013) focus on virtualization for
securing build server. Our approach leverages both
access control measures and virtualization for
securing the pipeline. Similarly, existing approaches
are primarily focused on securing build server
(which is one component of the CDP) while our
proposed tactics secure three main components
(repository, main server, and build server) of the
CDP. Most importantly, existing approaches are
evaluated using only qualitative analysis. We

evaluate the effectiveness of our proposed security
tactics using both qualitative and quantitative
analysis.

3 APPROACH

First, this section briefly describes our CDP and
shows how basic components of our implemented
CDPs collaborate with each other. Then, the CDP is
analysed from the security perspective to identify the
basic security risks in the CDP. The identification of
these security risks helps us in designing our
security tactics. Finally, we describe proposed
security tactics for improving the security of our
CDP.

3.1 Overview of CDP

The three main components of our CDP and the
relation between them is shown in Fig – 1. The
repository is the place where developers commit
their developed code. CI server is responsible for
testing and building the code committed to the
repository. In case commit of a developer breaks the
commit of another developer, then corresponding
developer is informed. If the build is successful then
the code is deployed in the main server.

Figure 1: Continuous Deployment Pipeline (CDP).

The components of the CDP, tools used for
implementation of the corresponding components,
and their versions are shown in Table – 1. For the
purpose of comparison, two CDPs are implemented
– one incorporates the security tactics (Secure CDP)
and other does not (Non-secure CDP). In both
CDPs, except GitHub, all other components run on
an AWS instance with Ubuntu as OS.

Table 1: Components of CDP.
Component Tool Version
Repository GitHub 1.9.1
CI Server Jenkins 1.656
Test JUnit 4.11
Build Server Maven 2.2.1
Web Server Tomcat 7.0.52.0

3.2 Security Risks in CDP

One of the major challenges in implementing CDP is
dealing with security risks (Bass et al., 2015, Rimba
et al., 2015). Before devising any approach for
securing CDPs, it is imperative to first identify and
understand these security risks faced by various
components of the CDP as summarized in Table – 2
and described in the followings:

3.2.1 Security Risks in Repository

Repository (GitHub) of our CDP is a standalone
component that does not borrow or lend security to
any other component. Since a password is the
protection criterion that repository uses to
authenticate developers, therefore, password
implementation needs to be of high strength (Gaw
and Felten, 2006). Secondly, a user with an access to
the GitHub account has total control over all other
repositories associated with that account. This total
control includes deleting individual repositories and
accepting a push or pull request for others. If such a
request for a malicious user is accepted, then this
user may initiate malicious activities and may accept
requests for other malicious users.

3.2.2 Security Risks in Main Server

Access to the Main server (AWS) should be
authenticated and authorized. Although a high
strength password solution is a fairly secure option,
but sometimes average password solutions are
implemented which gives an opportunity to social
engineers to breach password and get
unauthenticated access to resources (Tari et al.,
2006). In addition to password protection, an
additional security measure needs to be taken to
enhance the authentication process for the Main
server. Similarly, once authenticated, a user gets full
access to the instance including the OS. A
mechanism is required to restrict the access to
resources on the Main server.

3.2.3 Security Risks in CI server

CI server (Jenkins) also faces serious security
threats. A security failure can cause malicious
injection in a VM instance (with Jenkins inside it)
while it is running. It is important to ensure that
before starting a new build process, CI server should
be in a clean state (Gruhn et al., 2013). Secondly, the
default installation of Jenkins gives free access to
everyone. A mechanism is needed to assign a role to

each user which specifies the access rights of the
user (Sandhu et al., 1996). Such a mechanism would
enable the administrator to control who can create,
modify and delete pipelines.

Table 2: Security Risks in Key Components of CDP.

Component Security Risks
Repository
(GitHub)

Uncontrolled access

Main Server
(AWS)

Poor authentication mechanism

Uncontrolled access
CI server
(Jenkins)

Starting build process with
previously infected state
Uncontrolled access

3.3 Proposed Security Tactics

After a thorough analysis of the security threats
posed to various components of the CDP, five
Security Tactics (ST) are devised to eliminate
identified threats and secure the pipeline against
malicious activities. These security tactics are:

1. Securing repository through controlled
access to get hold over who can commit to certain
branches of the repository
2. Securing connection to the main server
through use of private key over Secure SHell (SSH)
3. Using roles on the main server to control
access via leveraging AWS Identity and Access
Management (IAM) ecosystem3
4. Setting up the CI server to start up a
Virtual Machine (VM) with a clean state by
leveraging Jenkins VM plug-in (Jenkins, 2013)
5. Using Jenkins roles plug-in (Jenkins, 2016)
for assigning roles on the CI server to control who
can create, modify and delete pipelines

First two tactics are incorporated in both the CDPs
(Secure CDP and non-secure CDP) while rest of the
three tactics are only incorporated in the secure CDP
as shown in Fig – 2. Each of the tactics is further
explained in the following sub-sections.

3 https://aws.amazon.com/documentation/iam/

Figure 2: Secure & non-secure CDP with incorporated security tactics.

3.3.1 Controlled Access to Repository

The Repository is the starting point of the CDP and
if its security is breached, then the security of the
entire CDP becomes vulnerable. GitHub allows
developers to commit code to the project by adding
them to “Collaborators”. In order to have control
over who can commit code or create and delete
individual repositories, default security gate of
GitHub is utilized. This enables the administrator or
particular user with assigned rights to accept or
reject a commit request. Each time a user makes a
push request to commit code, the administrator of
the repository has the authority to accept or reject
the request. Applying this approach before accepting
any commit request enables the administrator to
ensure that user or his activity is not malicious.
Sometimes, it may not be possible to have the
administrator to make an actual pull for every
commit due to a high number of commit requests.
However, there exist several solutions to address this
issue. For example, if the server is propriety Git
server then Gitolite4 is a possible solution.

3.3.2 Enhanced Authentication Mechanism
for Main Server

In addition to username and password, private key
over SSH (Ellingwood, 2014) is leveraged by the
Main server to keep AWS instance safe from an
insecure connection. Username and password give
access to AWS interface where instances can be

4 https://git-scm.com/book/en/v1/Git-on-the-Server-Gitolite

manipulated but username and password cannot
enable a user to connect to an instance. In order to
connect to an AWS instance, a private key over SSH
is required. This additional protection through
private key over SSH enhances authentication
process and ensures that no malicious user is
connected to an AWS instance.

3.3.3 Controlled Access to Main Server

Having only authentication mechanism means all
users will have the same kind of access rights, which
is problematic. In order to allocate particular access
rights to particular users, the concept of roles is
introduced. AWS Identity and Access Management
(IAM) ecosystem can be utilized to enable an
administrator to control access of users to AWS
instances and ecosystem and allocate access rights
based on the particular role of the user. For example,
the administrator can control which user can change
the settings of a firewall.

3.3.4 Clean CI Server VM Image

Utilizing VM plug-in in Jenkins protects VM from
outside malicious access (Gruhn et al., 2013). Every
time a Jenkins is asked to build, it fires up a VM
with a Jenkins inside it. Since the Jenkins is inside
the VM that performs the build, therefore, Jenkins
instance is not vulnerable to malicious activity.
When the build process gets finished, VM is shut
down and the Jenkins instance inside this VM is
destroyed. Next time, when a Jenkins is asked to
build, a new VM with a new Jenkins instance is
created to start the new clean build. Fig – 3
highlights the significance of VM plug-in by

showing the difference between states of a CI server
in the presence and absence of VM plug-in.

Figure 3: States of CI server with and without VM plug-in.

3.3.5 Controlled Access to CI Server

With Jenkins’ roles plug-in, it is possible to create
global roles, project roles, slaves’ roles and user
roles ('Role Strategy Plugin. Available at
https://wiki.jenkins-
ci.org/display/JENKINS/Role+Strategy+Plugin
[Last Accessed: 24th Oct, 2016],'). Here, we are
particularly interested to leverage this plug-in for
enabling the administrator to have a control over the
activity of a user. Using roles plug-in, administrator
assigns roles to each user based on his particular
role. Such an assignment of role would decide
access rights of the user. For example, an
administrator may restrict one user from creating,
modifying or deleting a pipeline but may allow
another user to perform these tasks.

4 ANALYSIS AND RESULTS

This section analyses the implemented CDPs both
qualitatively and quantitatively to investigate
whether the proposed tactics enhance the security of
secure CDP.

4.1 Qualitative Analysis of CDPs

We use Assurance Case with Goal Structuring
Notation (GSN) for qualitative assessment of the
effectiveness of proposed security tactics. Assurance
Case is a qualitative testing technique where
evidence is organized into an argument to show to a
certain interested party that a certain claim regarding
the system holds true (John Goodenough, 2007). In

Assurance Case technique, a claim about a system is
established and supported by objective evidence.
Sometimes safety arguments within safety cases
communicated via free text are unclear and create
misunderstanding among various stack holders. It is
always efficient and easily understandable to present
assurance case in graphical form rather than textual
form. For this purpose, GSN (Kelly and Weaver,
2004) is used to properly communicate arguments in
an assurance case through graphical notations. In
GSN, elements are linked together to form a goal
structure and while supporting arguments, goal
structure is successively broken down into sub-goals
until these small goals can be directly supported via
evidence (Kelly and Weaver, 2004).

We aim to secure three basic components
(Repository, Main Server, and CI Server) of a CDP.
We will analyse whether our proposed security
tactics meet the security requirements of these three
components of a CDP. If we demonstrate that the
proposed tactics properly meet the security
requirements, then it can be shown our security
tactics improve a CDP’s security.

 From the security perspective, the repository
requires controlled access, which means not all
users, should have full rights to access every
resource or perform any operation at the repository.
Security requirements of the Main server can be
broken down into two parts: firstly, every user
should be properly authenticated before allowing
him access to the Main server; and secondly access
to resources or authority to perform operations
should be authorized. The security requirements of
the CI Server can also be broken down into two
parts: firstly CI server should be in the clean state
before starting a new build process; and secondly
access to CI server should be controlled so that the
principle of least privilege (Sandhu and Samarati,
1994) can be realized. We make an assurance case
as shown in Fig – 4 to argue that our proposed
tactics satisfy the security requirements of the CDP.
We claim that our CDP is secure because three of
the major components (repository, main server, CI
server) of the CDP are secure. The repository is
secure because access to the repository is totally
controlled. First, a user is authenticated through his
credentials (username and password). After being
authenticated, default security gate of GitHub is
leveraged which enables the administrator to decide
about user’s privileges. The mechanism allows the
administrator to keep a check on who is committing
code and prevents a common user from allowing an
attacker to commit his malicious code. This security
measure also provides an additional protection to

Java files, JUnit files, and Maven files because they
do not have their own security mechanism rather
rely on repository's security mechanism. Next, we
claim that Main Server is secure. Main Server will
be secure if users accessing the Main Server are
authenticated and each user has specific rights
according to his role to access or perform particular
operations. In order to access an AWS instance on
Main Server, in addition to username and password,
a user needs private-key over SSH. This additional
security measure ensures that even if a malicious
user breaches the normal password security system,
he can't connect to the AWS instance as he would
require a private key for connecting and
manipulating an AWS instance. Similarly, the
second requirement of the Main server is addressed
by utilizing the AWS IAM service that enables an
administrator to assign specific access rights to users
according to their roles. Finally, we claim that CI
server is also secure. This claim is supported by two
arguments. In order to ensure that CI server is in a
clean state before starting a build process, we are
leveraging the VM plug-in, which protects Jenkins
instance from malicious attacks and ensures that CI
server remains in the clean and non-infected state.
Since the security of CI server requires controlled
access to CI server, role plug-in is leveraged to
enable an administrator to assign roles to various
users according to their particular roles.

Since our qualitative analysis demonstrates
that the proposed security tactics satisfy the security
requirements of the CDP, therefore, we can establish
that our proposed security tactics contribute to
improving the security of the CDP.

Figure 4: CDP Assurance Case.

4.2 Quantitative Analysis of CDPs

For quantitative evaluation of the effectiveness of
security tactics, two scanning tests are performed.
These scanning tests launch various kinds of attacks
on the application to find vulnerabilities and assess
the security level of the application.

The first of these tests is the Qualys OWASP
Scan5 that is normally practiced to see whether a
web application works according to the security
standards set by OWASP against online attackers.
Qualys OWASP scan helps understand and identify
vulnerabilities and support in fixing these
vulnerabilities. Scanning engine is intelligently
designed to perform specific scanning tasks and
avoid unnecessary vulnerability checks. Qualys
scanning methodology follows the same steps as an
attacker would follow (Qualys, 2015). The basic
steps of the scanning process include: (1) checking if
the host to be scanned is alive and running; (2)
checking if host is using some firewalling; (3)
identifying all open TCP and UPD ports; (4)
checking which operating system is used by host; (5)
identification of services running on open TCP or
UDP ports; (6) starting actual non-intrusive
vulnerability assessment (Qualys, 2015).

The second scanning tool is OWASP Zed
Attack Proxy (ZAP)6 scanner that is a free security
scanner for finding vulnerabilities in web
applications. ZAP has two kinds of scanners: Active
and Passive (ZAP, 2015). Active scanner performs a
wide range of known attacks on the host to find
vulnerabilities. The active scanner cannot detect
logical vulnerabilities such as broken access control.
In addition to active scanning, it is always beneficial
to perform manual penetration testing too. Passive
scanner constantly examines requests and responses
to detect a certain type of vulnerabilities. ZAP also
has fuzzing capability to identify vulnerabilities that
are more settled, which active and passive scanners
cannot identify. In this work, we only focus on
automatic attacks to assess the security aspects of
CDPs.

Primarily, these tools focus on web aspect of
penetration testing. The two important components
of CDPs (GitHub and Jenkins) have a public
interface in the form of a website. Tomcat, which
hosts Jenkins, has a public interface and so does the
dashboard that controls AWS instances. Keeping in
view that CDP has public web interfaces, these tools
are best available tools for quantitative assessment
of the security level of CDPs.

5 https://www.qualys.com/forms/freescan/owasp/

6https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

4.2.1 Repository (GitHub)

We mentioned that a single repository is used with
both the CDPs, hence, the security level of the
repository cannot be compared. Instead, these tests
enable us to find the vulnerabilities and their
severity.

OWASP scan found 105 vulnerabilities in the
repository as shown in Fig – 5a. The majority of the
vulnerabilities are related to Denial-Of-Service
(DoS) attacks, Internet Control Message Protocol
(ICMP) timestamp, path, and password-completion.
DoS attacks do not pose any direct threat to the
security of GitHub as these issues can affect
communication to and from pipeline but cannot
directly infect the pipeline. As a matter of the best
practice, ICMP timestamp issues can be addressed
via several available techniques (Singh et al., 2003,
Security, 2016), but these issues do not have any
significance in relevance to a CDP’s security. There
are several path-based vulnerabilities as well which
again does not pose any serious threat to a CDP’s
security. These path-based vulnerabilities give the
attacker some information about folder structure on
the server, which can be used for guessing the
structure of other folders on a server. Most browsers
have auto-password completion feature, which is a
serious issue. It means that retrieving such a
password from the browser would enable an attacker
to access CDP and inject malicious software, which
will be a total breach of security.

Figure 5a: OWASP Scan Result for Repository (GitHub).

ZAP scan found several vulnerabilities

categorized into eight groups as shown in Fig – 5b.
Identified vulnerabilities are related to settings of
cookie, usage of JavaScript, content caching, IP
disclosure and password auto-completion. Setting
cookie without the secure flag and HTTPOnly flag
makes it possible to access cookie via non-encrypted
connection and using JavaScript respectively. It does
not have much to do with a CDP’s security and can
be easily fixed too. The results show that about 6618
vulnerabilities of using JavaScript for another
domain. Not all the cases have been checked but the
ones that are checked come from GitHub subdomain
asssets-cdn.github.com which makes it a non-issue
in relevance to a CDP’s security. There are around
3683 cases (vulnerabilities) where HTTP allows
browser or proxy to cache contents, which again is

not relevant to the security of CDP. There are also
cases of displaying private IP in HTML response
code that can be mitigated via Load Master Content
Rule (KEMP, 2016) or similar strategies depending
upon the type of server. This vulnerability is also not
directly related to the security of CDP. Like
OWASP scan, password auto-completion
vulnerability is detected by ZAP scan too, which
poses a serious threat to the security of CDP.

Figure 5b: ZAP Scan Result for Repository (GitHub).

4.2.2 Main Server (AWS)

Scanning tests are separately applied on Main
servers for secure and non-secure CDPs.

Main Server of Secure CDP

As shown in Fig – 6a OWASP scan found three
vulnerabilities in the Main server of secure CDP.
Vulnerabilities found by this scan are related to
cookies, which identifies that secure flag and
HTTPOnly flag are not set. If these flags are not set,
it may allow the browser to communicate via a non-
encrypted channel and a client side script would be
able to read a cookie. Hence, such vulnerabilities do
not affect the security of CDP. Additionally, these
issues can be easily fixed.

Figure 6a: OWASP Scan Result for Main Server (AWS)

of Secure CDP.

ZAP scan found around 26 vulnerabilities of six
different types. Results obtained from ZAP scan are
shown in Fig – 6b. Similar to OWASP scan, the
majority of vulnerabilities are relevant to cookies.
Apart from that, issues relevant to content caching
and cross-site scripting are also identified. The list of
vulnerabilities shows that X-Frame-Options Header
is not added. This allows an attacker to inject
multiple transparent layers in HTTP page for
deceiving a user. Most modern browsers have this
feature and this issue can be easily fixed. As

mentioned previously, the issue of content caching is
hardly relevant to the security of CDP. Similarly, the
Anti-MIME-Sniffing header X-Content-Type-
Options can be easily set to ‘nonsniff’. Further
results indicate that XSS protection is not enabled
which can be enabled by setting the X-XSS-
protection HTTP response header to ‘1’.

Figure 6b: ZAP Scan Result for Main Server (AWS) of

Secure CDP.

Main Server of Non-Secure CDP

OWASP scan identified three vulnerabilities in the
Main Server of non-secure CDP as shown in Fig –
7a. Identified vulnerabilities are related to password
auto-completion, which poses a serious threat to the
security of CDP.

Figure 7a: OWASP Scan Result for Main Server (AWS)
of Non-secure CDP.

ZAP scan found around 42 vulnerabilities of eight
types in the Main Server of non-secure CDP as
shown in Fig – 7b. Most of the vulnerabilities
identified are of the same kind as found for Main
Server of secure CDP, however, the number of
vulnerabilities increased for non-secure CDP.
Additionally, as shown by OWASP scan as well,
Main Server of non-secure CDP has password auto-
completion vulnerability that is a serious issue in
relevance to the security of CDP.

Figure 7b: ZAP Scan Result for Main Server (AWS) of

Non-secure CDP.

4.2.3 CI Server (Jenkins)

Similar to Main Server, scanning tests are applied on
CI servers of both CDPs.

CI Server of Secure CDP

OWASP scan did not find any vulnerability in CI
server of secure CDP as shown in Fig – 8a.

Figure 8a: OWASP Scan Result for CI Server (Jenkins) of

Secure CDP.
As shown in Fig – 8b, ZAP scan found around 113
vulnerabilities of five types. The majority of the
vulnerabilities are the same as found for the main
server and it has already been discussed how these
issues can be addressed. A single serious
vulnerability is found which relates to password
auto-completion.

Figure 8b: ZAP Scan Result for CI Server (Jenkins) of

Secure CDP.

CI Server of Non-Secure CDP

In CI server of non-secure CDP, OWASP scan could
not find any vulnerability as shown in Fig – 9a.

Figure 9a: OWASP Scan Result for CI Server (Jenkins) of

Non-secure CDP.

Figure 9b: ZAP Scan Result for CI Server (Jenkins) of

Non-secure CDP.

Unlike OWASP scan, ZAP scan found
around 1428 vulnerabilities of seven types in CI
server of non-secure CDP that is quite a huge
number as compared to 113 found for secure CDP

(see Fig – 9b). In addition to the vulnerabilities
found in CI server of secure CDP, zap found several

other serious vulnerabilities in CI server of non-
secure CDP.

Table 3: Comparison of vulnerabilities found in components of secure and non-secure CDP.

Scan Test

OWASP

ZAP Total

Secure
CDP

Non-secure
CDP

Secure CDP Non-secure
CDP

Secure Non-
secure

Component

Main
Server

3 3 26 42 29 45

CI Server 0 0 113 1428 113 1428
GitHub 105 10781 10886

These newly identified vulnerabilities are
related to path traversal and application error
disclosure. The path traversal vulnerability is serious
because it allows an attacker to trick the web server
and get unauthorized access to sensitive files.
Application error disclosure may disclose sensitive
information, which can be used to initiate further
malicious attacks. Apart from these serious issues,
contrary to a single vulnerability of password auto-
completion in CI server of secure CDP, ZAP scan
found around 129 such vulnerabilities in CI server of
non-secure CDP.

5 DISCUSSION

As demonstrated, the proposed security tactics are
implemented in secure CDP and evaluated, both
qualitatively and quantitatively, to find about its
effects. The qualitative analysis genuinely specifies
that secure CDP is more secure than non-secure
CDP because the access to the repository, main
server, and CI server is protected through enhanced
authentication and authorization techniques. The
quantitative findings show that there are
vulnerabilities in both the secure CDP and non-
secure CDP. Since password auto-completion option
exists in web browsers, therefore, the password can
be retrieved for both GitHub and Jenkins, which is a
serious security issue. However, non-secure CDP
contains serious security risks related to accessing
cookies through JavaScript, updating Open SSH and
showing local IP publicly at GitHub. The findings
of the two security scans are summarized in Table –
3. OWASP scan does not show any difference in the
number of vulnerabilities but the nature of
vulnerabilities found for secure and non-secure CDP
is different. Vulnerabilities found by OWASP scan
both for Main Server and CI Server are of serious

nature and pose a direct threat to the security of CDP
while those found for secure CDP are not so serious
and are easily fixable. The results shown by ZAP
test approves the effectiveness of our devised tactics
both qualitatively and quantitatively. First, the
number of vulnerabilities found in non-secure CDP
is greater than the secure CDP has. Secondly, after
investigation, we found that vulnerabilities identified
in non-secure CDP are more severe and pose a
serious threat to the security of CDP. From the
overall results of the two security scans, it can be
established that secure CDP is far less vulnerable to
malicious attacks as compared to non-secure CDP
and so our proposed security tactics sufficiently
improve the security of our CDP.

The question can be raised whether these five
security tactics affect each other (particularly in a
negative way). An analysis of these tactics in
relation to each other would give us a clear picture.
The repository (GitHub) is isolated from the rest of
the setup, so the control over commit and access
rights do not have any consequences in relation to
other four security tactics. The connection to the
main server (AWS) through private-key over SSH
does not have any negative effects on other security
tactics rather it empowers the security of other
components. Similarly, roles on the main server do
not affect any other security tactic, though, it
interferes with private-key over SSH but these two
operate in different realms. The last two tactics are
solely related to Jenkins and they do not have any
negative consequences in relation to the
effectiveness of other security tactics. From this
analysis, it can be concluded that devised security
tactics can work together and do not affect each
other in any negative way. Here, it is important to
mention that our evaluation techniques have certain
limitations. Assurance case is merely a framework
for structuring argumentation, which is supported by

claims and quantitative evidence. A deficiency in
this technique is that it requires an iterative and
opponent-based process to develop an adequate
analysis. The results get fully credible only when
they can convince our audiences that software is
equipped with a reasonable level of security. From
the security findings and general information about
the scanning tools, it can be deducted that these tools
do not cover security issues relevant to OS and low-
level Java and it is highly recommendable to identify
and address such issues in order to properly assess
the security of CDP. It is also worth mentioning that
for leveraging full benefits of the devised security
tactics, all other essential security measures should
be taken into account. For example, firewall setting
needs to be correctly setup to help CDP properly
utilize incorporated security tactics.

6 CONCLUSION

Keeping in view the vast amount of security threats
faced by CDP, it is critical to analyse the CDP’s
security for identifying gaps and devising security
strategies to help secure CDP. In this paper, five
security tactics are devised to enhance the security
of three major components (repository, main server
and CI server) of the CDP, which are: (1) controlled
access and commit rights for repository; (2)
controlled access to AWS instance using private-key
over SSH; (3) use of roles on the main server via
leveraging AWS IAM; (4) use of VM plug-in for
ensuring initial clear state of Jenkins; (5) use of roles
on CI server to control access to Jenkins. After
devising these security tactics, two CDPs are
implemented, secure CDP that incorporates
proposed security tactics and non-secure CDP that
does not incorporate three of the proposed security
tactics. The security of both CDPs is evaluated
through qualitative and quantitative methods. The
qualitative analysis shows that secure CDP
implemented with security tactics is more secure
than non-secure CDP. The quantitative analysis also
shows a significant improvement in the security
level of secure CDP as evident from the number and
nature of vulnerabilities found in both CDPs through
two different scanning tests.

The results obtained through quantitative
analysis showed some deviation from expected
results, which is due to the fact that these penetration
tools are specialized for assessing the security of
web application. In next step, we plan to develop a
framework for assessing the security of the CDPs.
We also plan to incorporate our proposed security

tactics in a real CDP project and assess their effects
on the security aspect of the CDP. In future
research, these five security tactics will be
transformed into five security patterns by formally
describing them according to the standards set by
Gang of Four (GoF)7 team.

REFERENCES

Adams, B. and McIntosh, S. (2016) 'Modern Release
Engineering in a Nutshell -- Why Researchers Should
Care', IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering
(SANER), pp. 78-90.

Anderson, K. H., et al. (2014) 'Continuous deployment
system for software development.', U.S. Patent No.
8,677,315.

Anderson, K. H., Kenyon, J. L., Hollis, B. R., Edwards, J.
and Reid, B. (2014). Continuous deployment system
for software development. Google Patents.

Aslam, T., Krsul, I. and Spafford, E. H. (1996) 'Use of a
taxonomy of security faults'.

Bass, L., Holz, R., Rimba, P., Tran, A. B. and Zhu, L.
(2015) 'Securing a deployment pipeline', IEEE/ACM
3rd International Workshop On Release Engineering
(RELENG), pp. 4-7.

Chen, L. (2015) 'Continuous delivery: Huge benefits, but
challenges too', IEEE Software, 32(2), pp. 50-54.

Claps, G. G., Svensson, R. B. and Aurum, A. (2015) 'On
the journey to continuous deployment: Technical and
social challenges along the way', Information and
Software Technology, 57, pp. 21-31.

contributors, W. (2016) 'Continuous delivery', Wikipedia,
The Free Encyclopedia.

ElectricCloud (2016) 'What is Continuous Deployment,
Available at http://electric-
cloud.com/resources/continuous-delivery-
101/continuous-deployment/'.

Ellingwood, J. (2014) 'How To Configure SSH Key-Based
Authentication on a Linux Server. Available at
https://www.digitalocean.com/community/tutorials/ho
w-to-configure-ssh-key-based-authentication-on-a-
linux-server'.

Ellison, R. J., Goodenough, J. B., Weinstock, C. B. and
Woody, C. (2010) Evaluating and mitigating software
supply chain security risks: DTIC Document.

Fowler, M. (2013) 'Deployment pipeline. Available at
http://martinfowler.com/bliki/DeploymentPipeline.htm
l [Last Accessed: 24th Oct, 2016]'.

Gaw, S. and Felten, E. W. (2006) 'Password management
strategies for online accounts', Proceedings of the
second symposium on Usable privacy and security, pp.
44-55.

Gruhn, V., Hannebauer, C. and John, C. (2013) 'Security
of public continuous integration services', Proceedings

7 http://www.blackwasp.co.uk/gofpatterns.aspx

of the 9th International Symposium on Open
Collaboration.

Gregory, J. (2015) 'How Does Vulnerability Scanning
Work. Available at
https://community.qualys.com/docs/DOC-1068 [Last
Accessed: 24th Oct, 2016]'.

Humble, J. and Farley, D. (2010) Continuous delivery:
reliable software releases through build, test, and
deployment automation. Pearson Education.

John Goodenough, H. F. L., and Charles B. Weinstock
(2007) 'Arguing Security - Creating Security
Assurance Cases. Available at https://www.us-
cert.gov/bsi/articles/knowledge/assurance-
cases/arguing-security-creating-security-assurance-
cases'.

Kelly, T. and Weaver, R. (2004) 'The goal structuring
notation–a safety argument notation', Proceedings of
the dependable systems and networks.

KEMP (2016) 'Mitigate Against Internal IP Address
Disclosure In Basic Authentication Header. Available
at https://support.kemptechnologies.com/hc/en-
us/articles/204221255-mitigate-against-Internal-IP-
Address-disclosure-in-Basic-Authentication-Header-'.

Ko, C., Fink, G. and Levitt, K. (1994) 'Automated
detection of vulnerabilities in privileged programs by
execution monitoring', Computer Security Application
Conference, pp. 124-144.

Landwehr, C. E., Bull, A. R., McDermott, J. P. and Choi,
W. S. (1993) A taxonomy of computer program
security flaws, with examples: DTIC Document.

Langweg, H., and Einar Snekkenes (2004) 'A
classification of malicious software attacks', IPCCC.

OWASP, (2015) 'Owasp Zap User Guide. Available at
https://github.com/zaproxy/zap-core-
help/wiki/HelpIntro [Last Accessed: 24th Oct, 2016]'.

Phillips A, S. M., de Jonge A, van Holsteijn M. (2015)
'The IT Manager’s Guide to Continuous Delivery:
Delivering business value in hours, not months',
XebiaLabs.

Rimba, P., Zhu, L., Bass, L., Kuz, I. and Reeves, S. (2015)
'Composing Patterns to Construct Secure Systems',
Eleventh European conference on Dependable
Computing, pp. 213-224.

Serodio, D. (2016) 'Role Strategy Plugin. Available at
https://wiki.jenkins-
ci.org/display/JENKINS/Role+Strategy+Plugin [Last
Accessed: 24th Oct, 2016]'.

Sandhu, R. S., Coynek, E. J., Feinsteink, H. L. and
Youmank, C. E. (1996) 'Role-based access control
models yz', IEEE computer, 29(2), pp. 38-47.

Sandhu, R. S. and Samarati, P. (1994) 'Access control:
principle and practice', IEEE communications
magazine, 32(9), pp. 40-48.

Security, B. (2016) 'How can I mitigate "ICMP
Timestamp"?. Available at
https://beyondsecurity.zendesk.com/hc/en-
us/articles/203609549--How-can-I-mitigate-ICMP-
Timestamp- [Last Accessed: 7th Dec, 2016]'.

Singh, A., Nordström, O., Lu, C. and Dos Santos, A. L.
(2003) 'Malicious ICMP tunneling: Defense against

the vulnerability'. Australasian Conference on
Information Security and Privacy: Springer, 226-236.

Tari, F., Ozok, A. and Holden, S. H. (2006) 'A comparison
of perceived and real shoulder-surfing risks between
alphanumeric and graphical passwords', Proceedings
of the second symposium on Usable privacy and
security, pp. 56-66.

Thompson, K. (1984) 'Reflections on trusting trust',
Communications of the ACM, 27(8), pp. 761-763.

'VirtualBox Plugin. Available at https://wiki.jenkins-
ci.org/display/JENKINS/VirtualBox+Plugin [Last
Accessed: 24 Oct, 2016]'.

